认知需求被认为可以调节两种经常使用但很少合并的措施:学生大小和神经A(8 - 12 Hz)振荡能力。但是,尚不清楚这两种措施在综合视听条件下是否以类似方式捕获认知需求。在这里,我们记录了学生的大小和神经功能(使用脑电图),而男女的人参与者同时执行了视觉上的多重对象跟踪任务和听觉差距检测任务。这两个任务的困难彼此独立。参与者的表现随着认知需求的增长而降低了准确性和速度。学生的大小随着听觉和视觉任务的难度而增加。相比之下,一个功率显示出不同的神经动力学:顶叶的功率随着视觉任务的难度增加而降低,但不会随着听觉任务的难度增加而降低。此外,与任务难度无关,参与者内部试用的学生大小的逐审波动与权力负相关。难度引起的瞳孔大小的变化和力量没有相关,这与他们不同的认知需求敏感性一致。总体而言,当前的研究表明,在复杂的听力任务条件下,认知需求和相关努力的神经生理指标的动力学是多方面的,并且潜在的模态依赖性。
历史照片档案 OSCAR 1 卫星 - OSCAR 1 于 1961 年 12 月发射,是世界上第一颗非政府卫星。OSCAR 1 由一群加利福尼亚的业余无线电操作员仅花费 63 美元建造,运行了 22 天。照片来源:史密森航空航天博物馆。奥斯卡计划于 1963 年将左图的 Oscar 1 航天器模型捐赠给史密森尼博物馆。OSCAR - 搭载业余无线电的轨道卫星 1958 年 1 月第一颗美国卫星 (Explorer 1) 发射后不久,西海岸的一群业余无线电爱好者 - Lance Ginner,K6GSJ;Chuck Smallhouse,W6MGZ;Ed Beck,K6ZX;Al Diem;Chuck Townes,K6LFH (SK) 和 Nick Marshall,W6OLO (SK) - 组织起来,加入了 OSCAR 计划。经过 OSCAR 项目成员、ARRL 和政府机构之间的一系列交流,第一颗业余无线电卫星 OSCAR I 获得了在范登堡空军基地使用 Thor DM-21 Agena-B 火箭发射的机会。它于 1961 年 12 月 12 日上午成功发射。发射后,OSCAR 1 持续发射了 22 天直至电池断电,来自 28 个国家的 570 多名业余无线电爱好者确认收到了它。在三个多星期的时间里,OSCAR 1 用摩尔斯电码向世界各地的业余无线电操作员发送了简单的信息“HI”;这条信息当时和现在都是国际上公认的业余无线电爱好者之间的友好问候语。(以上文字摘自 2011 年 ARRL 网站上的一篇优秀文章,纪念 OSCAR 1 50 周年)。在 OSCAR 1 取得巨大成功的基础上,AMSAT 又赞助了数十颗后续“OSCAR”卫星,其中许多卫星仍在轨道运行,可供世界各地的业余无线电爱好者使用。
即使是最简单的认知过程也涉及皮质区域之间的相互作用。为了研究这些过程,我们通常依靠在任务的几个重复或长段数据中平均以达到统计有效的结论。神经元振荡反映了神经元集合中的同步兴奋性弹性,并且在存在或不存在外部刺激的情况下可以在电生理记录中观察到。振荡性脑活动被视为在特定频带下的功率持续增加。然而,近年来,这种观点受到了以下观点的挑战:振荡可能是在单个试验中发生的瞬态爆发事件发生的,并且只有在将多个试验平均时才能表现为持续活动。在这篇综述中,我们研究了振荡活动可以表现为短暂爆发以及功率持续增加的想法。我们讨论了在单个试验级别的瞬态事件检测和表征所涉及的技术挑战,可能会产生它们的机制以及可以从这些事件中提取的特征来研究神经元集合活性的单审动力学。
自1950年代以来,澳大利亚西北部的降雨量一直在显着增加(图1A和1B)(Smith,2004年)。大部分降雨量增加发生在12月至2月,这与季风时期大约一致(Wheeler&McBride,2012年)。图1A和1B显示了自1975年以来在澳大利亚北部的每个季风(12月至3月)的降雨天数和总降雨量的增加(图S1的图S1支持S1的趋势S1和SI单位的趋势和额外的降雨指数)。与其他研究相比,此处发现的降雨量增加并不是统计学上的显着意义(Dey,Lewis,Arblaster和Abram,2019; Shi等,2008),因为我们不得不将分析限制在1974年之前(有关更多详细信息,请参见第2.2节)。但是,这个时间周期的降雨趋势在降雨天数和总降雨量中仍显示出很大的增加,在某些地方,降雨量增加了10%。理解这种趋势是否会在未来持续存在,对于理解区域气候变化及其含义很重要。
严重中风后的运动功能恢复通常很有限。然而,一些严重受损的中风患者可能仍然具有康复潜力。识别这些患者的生物标志物很少。18 名严重受损且缺乏随意手指伸展能力的慢性中风患者参加了一项脑电图研究。在 66 次运动意象试验中,脑机接口将与事件相关的同侧感觉运动皮层的 β 波段去同步化转变为机器人矫形器对瘫痪手的张开。八名患者的亚组参加了随后的四周康复训练。运动范围的变化通过传感器捕捉到,这些传感器可以客观地量化腕部运动的哪怕是离散的改善。尽管运动障碍程度相同,但患者可以分为两组,即有和没有与任务相关的额叶/运动前区和顶叶区域之间的双侧皮质-皮质相位同步增加。这种额顶叶整合 (FPI) 与同侧感觉运动皮质中明显更高的意志 beta 调制范围有关。经过四周的训练,接受 FPI 的患者腕关节运动能力的改善明显高于未接受 FPI 的患者。此外,只有前者在上肢 Fugl-Meyer 评估评分方面有显著改善。神经反馈相关的长程振荡相干性可能区分严重受损的中风患者,了解他们的康复潜力,这一发现需要在更大的患者群体中得到证实。
在物理信息理论 (PIT) 中,质量、电荷、辐射和真空由三维结构表示,这些结构在四维场中具有振荡器特性,并以物理信息为特征。这些结构是通过在哈密顿原理 [3] 的条件下通过傅里叶变换 [1] [2] 从拉格朗日密度和量子力学通信关系的交换子中获得的。物理信息是封闭在四维场中的作用;它表征基本对象,在对象之间的相互作用中交换,并描述相互作用后对象属性的变化。与量子力学中基本对象(例如电子)由波函数描述不同,PIT 区分了电子核的振荡器(由质量和电荷的标量振荡器描述)和电子壳层(由静态麦克斯韦场的光子表示)。电子
摘要 — 偏置温度不稳定性 (BTI) 和热载流子退化 (HCD) 是主要的老化机制,经常通过晶体管测量或基于反相器 (INV) 的环形振荡器 (RO) 测量进行研究。然而,大规模数字电路通常用标准单元(如逻辑门)制造。在可靠性模拟流程中(例如,基于 SPICE 的标准单元特性与退化晶体管)必须对标准单元做出许多假设(例如负载电容、信号斜率、老化模型的不确定性等),并且可能导致较高的模拟不确定性。在这项工作中,我们建议用硅中的标准单元振荡器测量来验证这种标准单元特性。为此,我们提出以下新颖的贡献:1)首次基于从处理器中提取的逻辑路径对异构振荡器(一个 RO 中的多种不同单元类型)进行 BTI 和 HCD 测量。 2) 第一项工作探索了 BTI 和 HCD 对包含组合标准单元的振荡器的影响,即包含多个逻辑门的单个单元(例如与-或-反相器 (AOI) 单元和或-与-反相器 (OAI))和执行复杂操作(例如全加器)的单元。
ELEC 7970 线性、非线性和混沌振荡器课程大纲 先决条件:(1) 研究生入学;(2) 对微电子、电子电路和线性微分方程有基本的了解。课程目标:(1) 研究线性和非线性系统 (2) 研究正弦、非正弦和混沌振荡器的设计,(3) 了解相关主题,如 MEMS 谐振器、FLL、PLL 和 DDS,(4) 了解混沌理论和混沌振荡器电路。讲师:Robert Dean 博士(办公室:222 Broun Hall,844-1838,deanron@auburn.edu) 课程时间:周二和周四上午 9:30-10:45,304A Ramsay Hall 办公时间:待定,需预约。教科书:无 班级网站:www.eng.auburn.edu/~deanron/LNC Oscillators.html。 注:教学笔记的 PDF 版本将发布在班级网站上。 特殊需求:任何需要特殊照顾的学生应尽快预约讨论他们的需求。特殊需求的照顾将根据奥本大学的官方政策进行。 评分政策 将根据下面显示的分数标准,以 100 分制(90-100:A、80-89:B 等)评分 家庭作业和课堂项目:100% 家庭作业和课堂项目 家庭作业和课堂项目将在整个学期内布置。这些作业的截止日期为布置作业的当天。除非有正当理由缺席(生病、工作面试、参加会议旅行等),否则不接受迟交作业。提交作业的格式必须井然有序、专业且清晰易读(标有轴、正确的单位等)。多页作业必须用装订线装订。作业必须整齐专业地写在绿色/黄色工程纸的首页上,或仅用计算机打印一面。将分配一个班级项目,每个学生将进行经批准的独立研究调查,然后通过 PowerPoint 演示文稿向全班口头介绍结果。计算机资源一些家庭作业可能需要使用工程软件工具,例如 PSPICE、MATLAB (Simlink) 和/或 EXCEL。这些工具可在整个校园的工程学院工作站上使用。
摘要:自旋效应的纳米振荡器在当前可用的CMO设备之外有望,并且有可能用于模仿计算神经元系统中神经元的功能。当它们在4-20 GHz范围内振荡时,它们有可能用于构建高速加速的神经硬件平台。然而,由于它们的产出极低的信号水平和高阻抗以及其微波范围的工作频率,因此,当使用CMOS技术实施其状态读出电路时,SHNO是否振荡是否会带来巨大的挑战。本文介绍了第一个CMOS前端读出电路,该电路在180 nm上实施,以shno振荡频率高达4.7 GHz,设法辨别了100 µV的SHNO SHNO幅度,即使对于障碍物的障碍也达到300ω,并且噪声效果高达300ω,并且噪声效果为5.3 db db 300ω。提出了该前端的设计流以及其每个块的架构。对低噪声放大器的研究在设计中的固有困难中加深了深化,满足了SHNOS的特征。
液滴撞击动力学一直是液滴研究的重点和热点,深入挖掘液滴撞击动力学机理有利于自上而下指导和优化材料设计。随着高速成像技术的发展和创新[13],液滴撞击的瞬态流动可以在微观时间尺度上被清晰地记录下来。单个液滴在不同表面的撞击得到了更广泛的研究。Richard等人认为液滴撞击光滑超疏水表面的接触时间与撞击速度无关,而与液滴半径的3/2次方成正比。[14]对于具有圆对称扩散和反冲的液滴撞击,存在一个接触时间的理论极限( / / 2.2 0 3 t R τ ρ σ = ≥ ∗,[15]其中,ρ是液体的密度,R 0是液滴半径,σ是其表面张力,t是固液接触时间)。为了突破这一极限,科学家通过设计和修改超疏水材料的表面结构,强化和精确控制单个液滴的反弹行为,如减少4倍接触时间的煎饼反弹[16]和7300 r min −1 的旋转反弹[17]。虽然这些研究已经被广泛应用于解决喷墨打印[18]、微流体[19]和喷雾[20]的问题,但较少受到关注的多液滴模型在自然界、日常生活和工程中更为常见和适用(例如,冻雨对电网的灾难性影响)。多液滴模型可分为连续液滴[21]、液滴列车[22]、同时液滴[23]和液滴喷雾[24]等。越接近真实情况,越复杂,研究难度越大。[25]作为该领域的先驱,Fujimoto等人[26]和Schwarzmann等人[27]在多液滴模型中[28]进行了系统研究。采用闪光照相法和数值模拟相结合的方法,研究了液滴直径和撞击速度对液滴撞击固体的影响。[26,27] Sanjay等人用撞击油滴从超疏水表面提起静止的油滴,观察到了随着韦伯数(ρσ=02WeDv,其中D0为液滴直径,v为撞击速度)和质心偏移而产生的六种结果,其中四种结果不是聚结而是反弹。[28] Damak等人实验研究了液滴连续撞击超疏水表面的最大膨胀直径和回缩速率,并建立了通用模型来描述它们。[29]由于多体问题的复杂性和相互作用,大多数学者主要使用数值模拟