ABL1、ABL2、AKT1、ALK、APC、AR、ARAF、ARID1A、ARID1B、ATM、ATR、ATRX、BAP1、BARD1、BRAF、BRCA1、BRCA2、BRIP1、C11orf65、CCND1、CDH1、CDK12、CDK4、CDKN2A、CDX2、CHEK1、CHEK2、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCL、FBXW7、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、FOXA1、FOXL2、GATA3、GNA11、GNAQ、GNAS、HNF1A、HRAS、IDH1、IDH2、INPP4B、 JAK1、JAK2、JAK3、KDM5C、KDM6A、KEAP1、KIT、KRAS、MAP2K1、MAP2K2、MAPK1、MET(外显子 14 跳跃)突变)、MLH1、MPL、MSH2、MSH6、MTOR、MUTYH、MYC、MYCN、MYD88、NF1、NF2、NOTCH1、NPM1、NRAS、NTRK1、NTRK3、PALB2、PBRM1、PDGFRA、PIK3CA、PMS2、POLD1、POLE、PPP2R2A、PTCH1、PTEN、PTPN11、RAD51B、RAD51C、RAD51D、RAD54L、RAF1、RB1、RET、RHEB、RHOA、RIT1、ROS1、SETD2、SF3B1、 SMAD4、SMARCB1、SMO、SPOP、SRC、STK11、TERT、TP53、TSC1、TSC2、VHL
儿童高级别胶质瘤 (pHGG),包括弥漫性中线胶质瘤 (DMG) 和非中线肿瘤,仍然是最致命的肿瘤诊断之一(以下均称为“ pHGG ”)。针对关键致癌受体酪氨酸激酶 (RTK) 驱动因素的靶向治疗方案已得到广泛研究,使用小分子 RTK 抑制剂,但缺乏能够重现 pHGG 生物学的适当体内模型一直是一个研究挑战。值得庆幸的是,动物模型方面已取得许多最新进展,包括 Cre 诱导转基因模型以及宫内电穿孔 (IUE) 模型,它们可以紧密重现人类 pHGG 肿瘤的显着特征。测序研究发现,超过 20% 的 pHGG 存在血小板衍生的生长因子-α (PDGFRA) 改变,使得通过靶向酪氨酸激酶进行生长因子建模和抑制成为一个有趣的领域。由于其他生长因子(包括 FGFR、EGFR、VEGFR 以及 RET、MET 和 ALK)也经常发生改变,因此也有必要对这些受体进行建模。我们在此回顾了小鼠建模和在临床环境中对最重要的 RTK 进行精确靶向的最新进展。我们还回顾了该领域的最新研究,其中包括在临床前或临床环境中用于治疗 pHGG 的几种小分子 RTK 抑制剂。
Oncomine Comprehensive Assay v3 DNA 组:AKT1、AKT2、AKT3、ALK、AR、ARAF、ARID1A、ATM、ATR、ATRX、AXL、BAP1、BRAF、BRCA1、BRCA2、BTK、CBL、CCND1、CCND2、CCND3、CCNE1、CDK12、CDK2、CDK4、CDK6、CDKN1B、CDKN2A、CDKN2B、CHEK1、CHEK2、CREBBP、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCA、FANCD2、FANCI、FBXW7、FGF19、FGF3、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、 FOXL2、GATA2、GNA11、GNAQ、GNAS、H3-3A、HIST1H1E、HNF1A、HRAS、IDH1、IDH2、IGF1R、JAK1、JAK2、JAK3、KDR、KIT、KNSTRN、KRAS、MAGOH、MAP2K1、MAP2K2、MAP2K4、MAPK1、MAX、MDM2、 MDM4、MED12、MET、MLH1、MRE11A、MSH2、MSH6、MTOR、MYC、MYCL、MYCN、MYD88、NBN、NF1、NF2、NFE2L2、NOTCH1、NOTCH2、NOTCH3、NRAS、NTRK1、NTRK2、NTRK3、PALB2、PDGFRA、PDGFRB、PIK3CA、 PIK3CB, PIK3R1、PMS2、POLE、PPARG、PPP2R1A、PTCH1、PTEN、PTPN11、RAC1、RAD50、RAD51、RAD51B、RAD51C、RAD51D、RAF1、RB1、RET、RHEB、RHOA、RICTOR、RNF43、ROS1、SETD2、SF3B1、SLX4、SMAD4、SMARCA4、SMARCB1、SMO、SPOP、SRC、STAT3、STK11、TERT、TOP1、TP53、TSC1、TSC2、U2AF1、XPO1
髓母细胞瘤 (MB) 是儿童中最常见的恶性脑肿瘤,以其异质性和治疗相关毒性而闻名,迫切需要新的治疗靶点。我们使用 Illumina TruSight Tumor 15 面板分析了 69 例拉丁-伊比利亚分子特征化的髓母细胞瘤中 15 个驱动基因的体细胞突变谱。我们根据变异的临床影响和致癌性对其进行了分类。在患者中,66.7% 为 MB SHH ,13.0% 为 MB WNT ,7.3% 为 MB Grp3 ,13.0% 为 MB Grp4 。在发现的 63 个变异中,54% 被归类为 I/II 级,31.7% 为致癌/可能致癌。我们观察到 33.3% 的病例至少有一个突变。 TP53(23.2%,16/69)是突变最多的基因,其次是 PIK3CA(5.8%,4/69)、KIT(4.3%,3/69)、PDGFRA(2.9%,2/69)、EGFR(1.4%,1/69)、ERBB2(1.4%,1/69)和 NRAS(1.4%,1/69)。约 41% 的 MB SHH 肿瘤表现出突变,TP53(32.6%)是突变最多的基因。I/II 级和致癌/可能致癌的 TP53 变异与复发、进展和较低的生存率有关。PIK3CA 和 KIT 基因中可能可操作的变异是
高级肝细胞癌(HCC)是一个强大的公共卫生问题,具有有限的治疗方法。Axitinib是一种口服酪氨酸激酶抑制剂,是一种有效的选择性第二代抑制剂,是血管内皮生长因子受体(VEGFR)1、2和3的有效的第二代抑制剂。这种抗血管生成药物在包括晚期HCC在内的各种实体瘤中具有有希望的活性。目前,尚无相关评论文章总结了Axitinib在高级HCC中的确切作用。在这篇综述中,包括24项合格研究(临床研究中的7项研究,八项实验研究和9项临床试验)进行进一步评估。随机或单臂II期试验表明,与安慰剂治疗晚期HCC相比,Axitinib不能延长总体存活率,但是观察到了无进展生存期和肿瘤进展的时间的改善。实验研究表明,HCC中Axitinib的生化作用可能受其相关基因和影响的信号级联的调节(例如VEGFR2/PAK1,CYP1A2,CAMKII/ERK,AKT/MTOR和MIR-509-3P/PDGFRA)。FDA批准的索拉非尼与Nivolumab(PD-1/PD-L1的抑制剂)合并为治疗晚期HCC的第一线方案。由于Axitinib和Sorafenib都是酪氨酸激酶抑制剂以及VEGFR抑制剂,因此与抗PDL-1/PD-1抗体结合的Axitinib在抗肿瘤效应的高级HCC中也可能具有巨大的潜力。当前的评论突出了晚期HCC中轴替尼的当前临床应用和分子机制。通过结合Axitinib和先进的HCC中的其他治疗方法来朝着临床应用迈进,在不久的将来仍有更多的研究。
摘要 肾集合管癌 (CDC) 是一种罕见的肾细胞癌。它是一种恶性肿瘤,预后不良,治疗选择有限。一名 67 岁的男性,在因血尿、食欲不振和体重减轻以及腰痛接受评估时,发现左肾肿块伴有肺和骨转移。他接受了左肾根治性切除术,组织病理学检查证实了 CDC。他接受了卡铂和吉西他滨的姑息化疗。三个周期后的计算机断层扫描 (CT) 扫描显示部分反应。五个周期后,由于肾功能恶化,化疗停止。对程序性细胞死亡配体 1 (PDL1) SP263 和 Her2 neu 进行的免疫组织化学研究结果为阴性。对 75 个可治疗基因组进行的下一代测序显示神经纤维瘤病 1 型 (NF1) 基因的功能丧失突变。据报道,涉及血小板衍生的生长因子受体 α 基因 (PDGFRA)、FAT 非典型钙粘蛋白 1 (FAT1) 和雄激素受体 (AR) 基因的错义突变是意义不明的变异。液体活检未检测到有临床意义的改变。因此,他开始服用舒尼替尼。2 个月后,他出现脑转移,接受全脑放射治疗。全身治疗改为单药 Nab-紫杉醇。三个周期后,他的前臂出现皮肤转移,化疗改为单药阿霉素。三个周期的阿霉素治疗后,他死于该疾病。诊断后他存活了 16 个月。转移性 CDC 的一线治疗是吉西他滨和顺铂化疗。尚无确定的二线治疗方法。在这个时代,针对可靶向基因改变的下一代测序可以帮助我们选择后续治疗方法。
摘要:过度活跃的肿瘤微环境 (TME) 导致卵巢癌 (OC) 中癌细胞的无限制存活、耐药性和转移。然而,OC 的 TME 内治疗靶点仍然难以捉摸,量化 TME 活性的有效方法仍然有限。在此,我们采用综合生物信息学方法来确定哪些免疫相关基因 (IRG) 调节 TME,并进一步评估它们在 OC 进展中的潜在治疗诊断 (治疗 + 诊断) 意义。使用稳健的方法,我们开发了一个预测风险模型,以回顾性检查来自癌症基因组图谱 (TCGA) 数据库的 OC 患者的临床病理参数。预后模型的有效性通过来自国际癌症基因组联盟 (ICGC) 队列的数据得到证实。我们的方法确定了九个 IRG,AKT2、FGF7、FOS、IL27RA、LRP1、OBP2A、PAEP、PDGFRA 和 PI3,它们形成了 OC 进展的预后模型,区分出低风险组内临床结果明显更好的患者。我们验证了该模型作为独立的预后指标,并证明当与临床列线图一起使用时具有增强的预后意义,以实现准确预测。LRP1 表达升高表明膀胱癌 (BLCA)、OC、低级别神经胶质瘤 (LGG) 和胶质母细胞瘤 (GBM) 预后不良,也与其他几种癌症的免疫浸润有关。与免疫检查点基因 (ICG) 的显著相关性凸显了 LRP1 作为生物标志物和治疗靶点的潜在重要性。此外,基因集富集分析突出了 LRP1 参与代谢相关途径,支持其在 BLCA、OC、低级别神经胶质瘤 (LGG)、GBM、肾癌、OC、BLCA、肾肾透明细胞癌 (KIRC)、胃腺癌 (STAD) 以及胃和食管癌 (STES) 中的预后和治疗相关性。我们的研究在癌症的 TME 中生成了九个 IRG 的新特征,这些特征可以作为潜在的预后预测因子,并为改善 OC 的预后提供宝贵的资源。
4。Braun,T。P.,Eide,C。A.&Druker,B。J。对BCR-ABL1靶向疗法的反应和抗性。癌细胞卷。37 530–542预印本在https://doi.org/10.1016/j.ccell.2020.03.006(2020)。5。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J. 蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。Cheng,H。C.,Qi,R。Z.,Paudel,H。&Zhu,H。J.蛋白激酶和磷酸酶的调节和功能。 酶研究卷。 2011预印本在https://doi.org/10.4061/2011/794089(2011)。 6。 Bhullar,K。S.等。 以激酶为目标的癌症疗法:进步,挑战和未来的方向。 分子癌卷。 17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。 7。 Grant,S。K.治疗蛋白激酶抑制剂。 细胞和分子生命科学卷。 66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。 8。 Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。 循环研究卷。 106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。 9。 Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。 国际分子科学杂志卷。 24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。蛋白激酶和磷酸酶的调节和功能。酶研究卷。2011预印本在https://doi.org/10.4061/2011/794089(2011)。6。Bhullar,K。S.等。以激酶为目标的癌症疗法:进步,挑战和未来的方向。分子癌卷。17预印本在https://doi.org/10.1186/s12943-018-0804-2(2018)。7。Grant,S。K.治疗蛋白激酶抑制剂。细胞和分子生命科学卷。66 1163–1177预印本在https://doi.org/10.1007/s00018-008-8539-7(2009)。8。Geraldes,P。&King,G。L.蛋白激酶C同工型的激活及其对糖尿病并发症的影响。循环研究卷。106 1319–1331预印本https://doi.org/10.1161/circresaha.110.217117(2010)。9。Silnitsky,S.,Rubin,S。J. S.,Zerihun,M。&Qvit,N。蛋白激酶作为治疗靶靶标的更新 - 第一部分:蛋白激酶C激活及其在癌症和心血管疾病中的作用。国际分子科学杂志卷。24预印本在https://doi.org/10.3390/ijms242417600(2023)。 10。 Pottier,C。等。 癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。 11。24预印本在https://doi.org/10.3390/ijms242417600(2023)。10。Pottier,C。等。癌症中的酪氨酸激酶抑制剂:靶向治疗的突破和挑战。11。癌症卷。12 https://doi.org/10.3390/cancers12030731(2020)的预印本。Barouch-Bentov,R。&Sauer,K。激酶中耐药性的机制。有关研究药物的专家意见。20 153–208预印本在https://doi.org/10.1517/13543784.2011.546344(2011)。12。Lin,J。J. &Shaw,A。T.抵抗力:肺癌的靶向疗法。 癌症趋势。 2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Lin,J。J.&Shaw,A。T.抵抗力:肺癌的靶向疗法。癌症趋势。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。 13。 de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。2 350–364预印本在https://doi.org/10.1016/j.trecan.2016.05.010(2016)。13。de Santis,S。等。 克服对激酶抑制剂的抗性:慢性髓样白血病的范例。 Oncotargets and Therapy Vol。 15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。 14。 Drilon,A。等。 下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。 癌症Discov 7,963–972(2017)。 15。 Schoepfer,J。等。 发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。 J Med Chem 61,8120–8135(2018)。 16。 OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。de Santis,S。等。克服对激酶抑制剂的抗性:慢性髓样白血病的范例。Oncotargets and Therapy Vol。15 103–116 https://doi.org/10.2147/ott.s289306(2022)的预印本。14。Drilon,A。等。下一代TRK激酶抑制剂在TRK融合阳性固体瘤患者中获得了对先前TRK激酶抑制的耐药性。癌症Discov 7,963–972(2017)。15。Schoepfer,J。等。发现Asciminib(ABL001),这是BCR-ABL1酪氨酸激酶活性的变构抑制剂。J Med Chem 61,8120–8135(2018)。16。OU,X.,Gao,G.,Habaz,I。 A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。 Medcomm,5(9),E694。 https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。OU,X.,Gao,G.,Habaz,I。A.,&Wang,Y。对酪氨酸激酶抑制剂靶向疗法的抗性机制和克服策略。Medcomm,5(9),E694。https://doi.org/10.1002/mco2.694(2024)。 17。 Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。https://doi.org/10.1002/mco2.694(2024)。17。Cohen,P。,Cross,D。&Jänne,P.A。 伊马替尼20年后的激酶药物发现:进步和未来方向。 nat Rev Drug Discov 20,551–569。Cohen,P。,Cross,D。&Jänne,P.A。伊马替尼20年后的激酶药物发现:进步和未来方向。nat Rev Drug Discov 20,551–569。https://doi.org/10.1038/s41573-021-00195-4(2021)。18。Leonetti,A。等。 在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Leonetti,A。等。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。 英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。在EGFR突变的非小细胞肺癌中对osimertinib的抗性机制。英国癌症杂志卷。 121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。 19。 Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。英国癌症杂志卷。121 725–737预印本在https://doi.org/10.1038/s41416-019-019-0573-8(2019)。19。Teuber,A。等。 基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Teuber,A。等。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。 nat Commun 15,(2024)。 20。 Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。 肿瘤/血液学的批判性评论卷。 171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。 21。 Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。基于Avapritinib的SAR研究推出了套件和PDGFRA中的结合口袋。nat Commun 15,(2024)。20。Réa,D。&Hughes,T。P. Asciminib的发展,Asciminib是BCR-ABL1的新型变构抑制剂。肿瘤/血液学的批判性评论卷。171预印本在https://doi.org/10.1016/j.critrevonc.2022.103580(2022)。21。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。 生物医学和药物治疗卷。 150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。Jiang,Q.,Li,M.,Li,H。&Chen,L。Entectinib,一种新的多目标抑制剂,用于癌症治疗。生物医学和药物治疗卷。150预印本在https://doi.org/10.1016/j.biopha.2022.112974(2022)。
摘要 免疫组织化学和最新的分子技术逐步指导了个性化抗肿瘤治疗。我们探讨了分子分析对晚期脑肿瘤患者的可行性、有效性和影响。这项多中心前瞻性试验 ProfiLER 招募了原发性脑肿瘤患者,这些患者之前至少接受过一线抗癌治疗,并且使用下一代测序和/或比较基因组杂交对肿瘤、复发或活检的新鲜或存档样本获得了分子分析结果。分子肿瘤委员会每周分析结果并提出基于分子的推荐疗法 (MBRT)。从 2013 年 2 月到 2015 年 12 月,我们招募了 141 名原发性脑肿瘤患者,并分析了 105 名已获得肿瘤基因组分析的患者。组织学主要确诊为胶质母细胞瘤 ( N = 46, 44%)、低级别胶质瘤 ( N = 26, 25%)、高级别胶质瘤 ( N = 12, 11%) 和非典型及间变性脑膜瘤 ( N = 8, 8%)。43 名 (41%) 患者出现至少一种可操作的分子改变。在确诊的 61 种改变中,最常见的改变是 CDKN2A ( N = 18)、EGFR ( N = 12)、PDGFRa ( N = 8)、PTEN ( N = 8)、CDK4 ( N = 7)、KIT ( N = 6)、PIK3CA ( N = 5) 和 MDM2 ( N = 3)。16 名 (15%) 患者因早逝 ( N = 5)、缺乏可用的临床试验 ( N = 9) 或结果不合适 ( N = 2) 而无法接受 MBRT。在 27 名 (26%) 拟进行 MBRT 的患者中,只有 6 名 (6%) 最终开始 MBRT(依维莫司 ( N = 3)、厄洛替尼 ( N = 1)、芦可替尼 ( N = 1) 和索拉非尼 ( N = 1)),但因毒性 ( N = 4) 或临床进展 ( N = 2) 而停止治疗。脑肿瘤患者可常规进行高通量测序,尤其是在有宏观手术样本时;尽管如此,仍应减少延误。应重新考虑脑肿瘤患者的临床试验入组标准,并应开发一组专门针对神经系统肿瘤的基因来帮助临床实践中的决策。
3 Oxford Immune Algorithmics, Reading, UK ABSTRACT This study employs systems medicine approaches, including complex networks and machine learning- driven discovery, to identify key biomarkers governing phenotypic plasticity in pediatric high-grade gliomas (pHGGs), namely, IDHWT glioblastoma and H3K27M diffuse intrinsic pontine glioma (DIPG).通过整合单细胞转录组学和组蛋白质量细胞术数据,我们将这些侵略性肿瘤概念化为复杂的自适应生态系统,该系统由被劫持的oncofetal发育程序和病理吸引力动力学驱动。Our analysis predicts lineage-plasticity markers, including KDM5B (JARID1B), ARID5B, GATA2/6, WNT, TGFβ, NOTCH, CAMK2D, ATF3, DOCK7, FOXO1/3, FOXA2, ASCL4, PRDM9, METTL5/8, RAP1B, CD99, RLIM, TERF1, and LAPTM5, as drivers of细胞命运控制论。此外,我们确定了内源性生物电特征,包括Grik3,Grin3,Slc5a9,Nkain4和KCNJ4/6,是潜在的重编程靶标。此外,我们验证了先前发现的可塑性基因,例如PDGFRA,EGFR靶标,OLIG1/2,FXYD5/6,MTSSS1,SEZ6L,MTRN2L1和SOX11,证实了我们复杂系统方法的鲁棒性。此系统肿瘤学框架为精确医学提供了有前途的途径,通过指导由单细胞多摩学告知的组合疗法来优化患者的结果,并以PHGG表型可塑性为治疗性脆弱性。此外,我们的发现表明肿瘤表型可塑性(即过渡疗法)和PHGG生态系统中疾病的表观遗传重编程性能朝向稳定的,转分化的状态。因此,了解关键字:小儿神经胶质瘤;表型可塑性;癌症多组学;数据科学;系统医学;精度肿瘤学。引言小儿高级神经胶质瘤(PHGGS)代表致命疾病,没有任何精确诊断,有效的治疗或预防(Swanton等,2024)。这些侵略性肿瘤破坏了发育过程和组织稳态,导致形态发生,对治疗的抵抗力和免疫逃避(Senft等,2017; Jessa等,2019)。对其病理学的中心是表型可塑性 - 细胞在谱系身份之间适应响应微环境压力的能力。This plasticity arises from epigenetic dysregulation, such as oncohistone mutations like H3K27M (H3F3A) and driver mutations like TP53, ACVR1, etc., which destabilize chromatin structure, trapping cells in metastable, multipotent states and impairing their differentiation hierarchy (Shpargel et al., 2014; Paugh et al., 2011; Jessa et al., 2019)。实际上,这些塑料状态促进了肿瘤的进展和耐药性作为新兴行为,从而创造了不稳定的生态系统。