目的:癌症代谢重编程促进对治疗的抵抗。在本研究中,我们探讨了瓦博格效应在皮肤鳞状细胞癌 (sSCC) 对光动力疗法 (PDT) 的抵抗中的作用。此外,我们评估了二甲双胍治疗作为 PDT 辅助治疗的效果,二甲双胍是一种调节代谢的抗糖尿病 II 型药物。方法:为此,我们使用了两种人类 SCC 细胞系:SCC13 和 A431,称为亲本 (P),并从这些细胞系中生成了相应的 PDT 抗性细胞 (10GT)。结果:在这里,我们表明 10GT 细胞诱导代谢重编程,增强有氧糖酵解并降低氧化磷酸化活性,这可能会影响对 PDT 的反应。这一结果也在小鼠体内形成的 P 和 10GT SCC13 肿瘤中得到证实。二甲双胍治疗导致 10GT sSCC 细胞有氧糖酵解减少,氧化磷酸化增加。最后,二甲双胍与 PDT 的结合改善了对 P 和 10GT 细胞的细胞毒性作用。联合治疗诱导原卟啉 IX 产生、活性氧生成和 AMPK 表达增加,并产生 AKT/mTOR 通路抑制。在 P 和 10GT SCC13 细胞异种移植中,体内也观察到联合治疗的更高疗效。结论:总之,我们的结果表明 PDT 耐药性至少部分意味着代谢重编程朝向有氧糖酵解,而二甲双胍治疗可以阻止这种重编程。因此,二甲双胍可能是 sSCC 中 PDT 的极佳佐剂。2022 作者。由 Elsevier GmbH 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
AMETEK PDT 长期参与美国太空计划,与 NASA 合作为三次火星机器人任务和国际空间站上的两个实验平台提供系统和组件。在为 Sojourner、Spirit、Opportunity 和 Curiosity 火星计划提供集成泵送装置后,PDT 开始了其迄今为止最大的任务:在为期两年的火星探索任务中保持火星毅力号探测器的热控制。
线粒体失调在致癌作用中起着重要作用。另一方面,线粒体的不稳定会严重抑制癌细胞的生存力和转移潜能。光动力疗法和光热疗法 (PDT 和 PTT) 可有效靶向线粒体,提供创新和非侵入性抗癌治疗方式。具有强线粒体选择性的菁染料在增强 PDT 和 PTT 方面表现出巨大潜力。本文讨论了菁染料用于线粒体 PDT 和 PTT 的潜力和局限性,以及它们在联合疗法、治疗诊断技术和最佳输送系统中的应用。此外,本文还介绍了使用光活性菁染料进行声动力治疗的新方法,重点介绍了癌症治疗的进展。
简介:肿瘤缺氧和入侵对光动力疗法(PDT)在三阴性乳腺癌(TNBC)中的功效提出了重大挑战。这项研究开发了一种线粒体靶向策略,该策略将PDT和基因治疗相结合,以相互促进并应对挑战。方法:带正电荷的两亲材材料三苯基二苯基 - 生育酚聚乙烯乙二醇琥珀酸酯(TPP-TPGS,TPS)和光敏剂氯化物E6(CE6)由Hydropolopic Itsaction形成TPS@CE6纳米颗粒(NPS)。他们静态凝结的microRNA-34A(miR-34a)形成稳定的TPS@CE6/miRNA NP。结果:首先,CE6破坏了溶酶体膜,然后通过TPS@CE6/miRNA NPS成功递送miR-34a。同时,miR-34a减少了ROS耗竭并进一步增强了PDT的有效性。因此,PDT和基因治疗之间的相互促进导致抗肿瘤作用增强。此外,TPS@CE6/miRNA NP通过下调caspase-3促进了凋亡,并通过下调N-钙粘着蛋白来抑制肿瘤细胞迁移和侵袭。此外,体外和体内实验表明,TPS@ce6/miRNA NP达到了出色的抗肿瘤作用。这些发现强调了通过PDT和基因治疗的协同作用增强的抗癌作用和肿瘤细胞迁移的降低。结论:综上所述,CE6和miR-34a的靶向共递送将促进光动力和基因纳米医学在治疗侵袭性肿瘤(尤其是TNBC)中的应用。关键词:光动力疗法,基因疗法,缺氧,入侵,线粒体靶标,三阴性乳腺癌
胰腺癌,尤其是胰腺导管癌(PDAC)是最难治疗的癌症之一。由于没有或有限的治疗选择,它仍然是半个世纪无法治愈的恶性肿瘤[1]。最近,光动力疗法(PDT)已成为治疗胰腺癌的一种有前途的方法[2]。PDT药物(如中苯甲酰基)(羟基苯基)氯蛋白(MTHPC)和verteporfin在临床中对PDAC患者的治疗显示出阳性的治疗结果[3]。为了增强治疗功效,下一代PDT剂旨在靶向癌细胞。由于胰腺癌细胞严重依赖内质网(ER)来综合激素的固有要求,因此ER被认为是开发Pecision Medicine用于治疗PDAC的有吸引力的靶标[4,5]。er与脂质液滴密切相关,已知后者与晚期临床分期,转移和生存率差正相关[6]。考虑到PDAC中ER和LD的重要性,有一个
摘要:光动力疗法 (PDT) 是一种很有前途的癌症治疗方法,它涉及光敏剂 (PS)、用于激活 PS 的特定波长的光和氧气,它们结合在一起引发细胞死亡。虽然激活 PS 所需的光照为 PDT 治疗提供了一定的选择性,但肿瘤蓄积不良和细胞内化不良仍然是大多数静脉注射 PS 的固有特性。因此,PDT 的常见后果包括皮肤光敏性。为了克服上述问题,可以定制 PS 以专门针对肿瘤的过度表达生物标志物。这种主动靶向可以通过将 PS 直接结合到具有增强亲和力的配体上来实现,该配体对癌细胞和/或肿瘤微环境中的其他细胞上过度表达的靶标具有增强的亲和力。或者,PS 可以整合到配体靶向纳米载体中,其也可能包含多种功能,包括诊断和治疗。在这篇评论中,我们重点介绍了 PS 主动靶向方面的重大进展,无论是通过配体衍生的生物共轭物还是通过利用配体靶向纳米载体。
光动力疗法(PDT)已成为实体瘤和非综合疾病的非侵入性和选择性治疗方案的突出性。然而,诸如光渗透到组织的浅渗透和光敏机(PS)的较差的局限性阻碍了其效率。为了应对这些挑战,研究人员正在探索基于纳米技术的递送工具和基于细胞的方法,以改善PS分布,靶向积累和受控药物释放。本期特刊展示了肿瘤学和非综合PDT药物输送系统的进步。本社论旨在概述本期《特刊》中发表的八篇研究文章和七篇评论论文。obaid及其同事将他们的研究重点放在改善基于OSMIUM(II)的光敏剂(ML18J03)的性能上,该光敏剂(ML18J03)被配制为DSPE-MPEG2000胶束。这种配方不仅改善了光敏剂的发光,而且还提高了其肿瘤选择性。通过将光敏剂封装在胶束中,搜索者能够增强其在肿瘤组织中的积累并达到更高水平的选择性,从而解决了光敏剂的低发光量子产率所带来的挑战[1]。组合疗法一直在引起人们的注意,以增加癌症治疗的特征结果。在这种情况下,Duchi和合作者探索了角蛋白纳米粒子中氯素-E6(CE6)和紫杉醇(PTX)的共囊化,以治疗骨肉瘤(OS)。这种组合显示出抑制肿瘤细胞生长的有希望的结果。通过将CE6和PTX共同交付,研究人员观察到OS的原位模型中的协同作用,与单独使用任何一种治疗相比,肿瘤大小显着降低了[2]。Muragaki及其同事分析了Talapor Fium介导的PDT的效率,作为复发性胶质母细胞瘤(GMB)的治疗方法。对70例使用PDT手术和38例单独手术的患者进行了回顾性分析。结果表明,与对照组相比,PDT组的中值无进展生存期更长。第二次手术后的中位总生存期在PDT组中也更长。该分析进一步表明,不管发生前病理学,PDT的有效性都是一致的,这表明复发性GBM患者的潜在生存益处[3]。在同一主题上,Tsung Yang及其同事致力于开发用于治疗GMB的新治疗选择。作者研究了使用光化学间杀菌剂将治疗药物释放到GBM细胞中使用光激活的光敏剂。该研究采用了依托泊苷(ETOP)和原磷脂IX(PPIX),并被载入聚胺树状聚合物纳米球中。与游离PPIX相比,该配方显示出增强的细胞摄取,与单独使用ETOP和PPIX治疗相比,光照射会增加协同作用,氧气应激和凋亡[4]。这些纳米载体被设计为靶向过表达表皮生长的细胞为了应对癌症治疗中精确药物定位的挑战,Nonell和同事的研究致力于开发靶向的化学量 - 纳米载体。
(HO)通过在适当的光照射下在肿瘤中获得的光敏剂(PS)的光激发(PS)。3,4 PDT过程可以分为I型和II型,具体取决于PS与其附近的ps触发反应。3,4具体,I型反应涉及氢原子抽象或电子转移,最终导致自由基和过氧化氢的形成(H 2 O 2),而II型II型通过从电子激发的三胞胎PS到地面分子氧的能量转移导致单线氧(1 O 2)的产生。3,4 II型PDT是主要机制,因为大多数PSS是II型。3,4不幸的是,这种对周围氧气的依赖性与肿瘤缺氧的固有特性相矛盾。缺氧是由于快速癌细胞增殖和不规则的血管生成,在实体瘤的微环境中发现了一个显着而重要的特征。5与在大多数健康组织中发现的40-60 mmHg范围相比,肿瘤低氧区域中的氧气通常降至10 mmHg以下。6因此,由于II型PDT高度依赖氧浓度,因此低氧肿瘤
USACE PB 2019-04 为将生命安全纳入沿海风暴风险管理 (CSRM) 研究提供了指导。本指导基于堤坝,当防洪结构比罕见风暴事件期间更频繁(或持续)地承受荷载时,旧金山 CSRM 本质上在更高的 SLC 率下发挥堤坝的作用。第 4b 段要求在评估海平面上升和 CSRM 提供的保护导致的生命风险增加或转变时,识别生命风险来源。第 5d 段要求对所有新堤坝系统进行生命安全风险评估。项目交付团队 (PDT) 计划在选定 TSP 后进行详细的生命安全评估。对于初始替代方案阵列,PDT 已进行了定性评估,并记录在本补充报告中。