Quantum Health Group Limited (ASX:QTM) 是一家领先的独立医疗保健公司,业务遍及亚洲。Quantum Healthcare 专注于分销最先进的医学影像、患者治疗和放射科、肿瘤科和女性医疗保健设备服务。Quantum Healthcare 总部位于澳大利亚悉尼,在泰国、韩国、菲律宾、新西兰、越南和中国设有直属子公司。Quantum 是 Carestream、Philips Healthcare、Samsung、IBA 和 Accuray 等全球领先医疗保健制造商的授权分销合作伙伴。Quantum Healthcare 已成功在亚洲创建了一个医疗保健技术平台,并为医院、大学和私人诊所的大量医疗设备安装提供一流的客户服务和临床支持。
在鸡中,原始生殖细胞 (PGC) 是基因敲入等高级基因组编辑的有效靶点。尽管已经建立了鸡 PGC 的长期培养系统,但仍有必要选择一种高效、精确的基因编辑工具来编辑 PGC 基因组,同时保持其对生殖系统的贡献能力。与传统用于生成敲入鸡的同源重组方法相比,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 和 CRISPR 介导的精确整合到目标染色体 (CRIS-PITCh) 方法更胜一筹,因为供体载体更易于构建、基因组编辑效率高,并且不会选择目标细胞。在本研究中,我们利用 CRIS-PITCh 方法将荧光蛋白基因盒作为融合蛋白整合到鸡 PGC 的鸡血管同源物 ( CVH ) 基因座中,从而设计了敲入鸡 PGC。敲入 PGC 在体内和体外均表达荧光蛋白,便于对 PGC 进行追踪。此外,我们还表征了设计双敲入细胞系的效率。通过有限稀释获得敲入细胞克隆,并通过基因分型确认设计双敲入细胞系的效率。我们发现 82% 的分析克隆都成功敲入了两个等位基因。我们认为,从敲入 PGC 中生产模型鸡可用于各种研究,例如阐明鸡的生殖细胞命运和性别决定。
范可尼贫血 (FA) DNA 损伤反应 (DDR) 通路调节重要的细胞过程,例如 DNA 复制、细胞周期控制和 DNA 损伤修复。本文我们表明,FANCD2 是 FA DDR 通路的关键成员,它与生殖细胞特异性 Prmt5/piRNA 通路的几个重要成分相互作用,这些通路协调对转座因子 (TE) 的抑制。通过使用标记纯原始生殖细胞 (PGC) 群体的 Pou5f1 -eGFP 报告小鼠,我们证明 FA 缺乏会导致 TE 的抑制解除、PGC 耗竭以及精子发生和卵子发生缺陷。Fancd2-KO PGC 表现出过度的 DNA 损伤并加剧细胞凋亡。从机制上看,我们观察到在 Fancd2-KO ; Pou5f1 -eGFP 和 Fanca-KO ; Pou5f1 -eGFP 胚胎的 E10.5 PGC 中,PRMT5 催化的 H2A/H4R3me2s 标记在 LINE1 TE 上显著减少。此外,我们利用 Fancd2-KI 模型表明,在 WT PGC 中,FANCD2 和 PRMT5 共同占据了 LINE1 的启动子,而在 FA 缺陷型(Fanca-KO)PGC 中,这种共同占据消失了。这些结果表明,FA 通路参与了早期 PGC 中的 TE 抑制,可能通过一种涉及 FANCD2 促进的、PRMT5 催化的抑制性 H2A/H4R3me2s 标记的机制来实现。生殖 (2020) 159 659–668
但是,鸡等鸟类每天只能产一个卵子,因此,为了获得一个细胞分裂前的受精卵,即原核合子,必须解剖母鸡并从输卵管中采集,这非常低效。此外,鸟类卵子的蛋黄很大,很难直接显微操作受精卵。因此,为哺乳动物等其他动物物种建立的方法不能用于生产基因组编辑鸡。因此,我们的研究小组决定使用原始生殖细胞(PGC),即生殖细胞的起源(图3)。在鸟类中,PGC在3天大的胚胎的血管中循环,这是其他动物物种中很少见到的独特现象。我们一直在利用从3天大的胚胎中采集的PGC研究鸡的受精机制。利用1号染色体(CM1)的培养技术等,建立了在培养皿中培养PGC的同时进行基因组编辑的方法。将基因组编辑雄性的培养PGC移植到同性的受体胚胎中时,移植的基因组编辑PGC和受体自己的PGC在受体胚胎的睾丸中共存,从而产生生殖系嵌合鸡。生殖系嵌合鸡的睾丸产生来自基因组编辑PGC的精子,通过与野生型雌性交配,可以获得部分目标基因序列杂合缺失的基因组编辑鸡(第一代:G1)。接下来,在性成熟雄性和雌性的G1交配获得的后代中,出现了基因纯合缺失的基因组编辑鸡(第二代:G2)。在纯合缺失的基因组编辑鸡中,目标基因序列的删除会引起移码,从而导致终止密码子的过早出现,从而使基因功能失活并阻止正常的蛋白质产生。
我们的 PGC 3000 是目前市场上最紧凑的专业冗余 GPS 时钟。它仅在一个高度单元中结合了功能齐全、冗余的高质量参考时钟。PGC 3000 涵盖了需要高精度参考信号以及精确时间戳的广泛应用。该设备非常适合数字视频和无线电广播应用。
摘要 线粒体含有一个独立的基因组,称为线粒体 DNA (mtDNA),其中包含必需的代谢基因。尽管 mtDNA 突变发生频率很高,但它们很少被遗传,这表明生殖系机制限制了它们的积累。为了确定生殖系 mtDNA 是如何调控的,我们研究了秀丽隐杆线虫原始生殖细胞 (PGC) 中 mtDNA 数量和质量的控制。我们发现 PGC 结合多种策略来产生 mtDNA 数量的低点,方法是将线粒体分离成叶状突起,这些突起会被相邻细胞蚕食,同时通过自噬消除线粒体,使整体 mtDNA 含量降低两倍。当 PGC 离开静止状态并分裂时,mtDNA 会复制以维持每个生殖系干细胞约 200 个 mtDNA 的设定点。尽管同类相食和自噬会随机消除线粒体 DNA,但我们发现,独立于 Parkin 和自噬的激酶 PTEN 诱导激酶 1 (PINK1) 优先减少突变线粒体 DNA 的比例。因此,PGC 采用并行机制来控制种系线粒体 DNA 创始群体的数量和质量。
摘要:本社论简要总结了特刊“基于凝聚态原理的信息和统计测量:从经典到量子”中收集的十 (10) 篇论文的努力。特刊征集的论文涉及凝聚态系统或其跨学科类似物,这些系统可以基于熵概念推断出明确定义的经典统计与量子信息测量。特刊主要基于 2019 年 10 月在波兰比得哥什科技大学 (UTP) 举行的国际研讨会上提出的目标(参见 http://zmpf.imif.utp.edu.pl/rci-jcs/rci-jcs-4/),重点介绍了 Gerard Czajkowski 教授 (PGC) 的成就。 PGC 在波兰协同学之父 Roman S. Ingarden (Toruń) 的指导下开始了他的扩散反应 (开放) 系统的研究,并提出了原创的自组织热力学方法。PGC 的积极合作主要与德国物理学家 (Friedrich Schloegl,亚琛;Werner Ebeling,柏林) 合作。然后,值得强调的是 Czajkowski 研究的发展,从统计热力学转向固态理论,以非线性固态光学 (Franco Bassani,比萨) 为研究方向,最近以大型准粒子 (称为里德堡激子) 及其与光的相干相互作用达到顶峰。
摘要:由科特瓦农业学院领导,与伙伴爱荷华州立大学,密苏里大学,内布拉斯加大学,威斯康星大学,土地研究所,土地研究所,顾问C. Bartle,LLC和诗人的合作,该项目旨在减少玉米的CI,并在越多的玉米中减少越多的玉米的ci,从而在此处越来越多地覆盖玉米,从而在此处逐渐覆盖越来越多的土壤,从而在此处逐渐覆盖了越野覆盖层的覆盖范围, 贮存。这个多状态(KS,NE,IA,MO和WI),七年项目将将实际的现场试验与建模相结合,以估算碳强度的降低以及项目的PGC系统的成本。与爱荷华州农民进行充分开发,记录和大规模证明时,这种玉米毒蛋白PGC系统有望增强农民对这种新型系统的采用。
摘要:植被和土壤占据了大约30%的人为CO 2排放,因为从生产率和营业额较大的较大总碳交换中的不平衡很小,但受到限制不佳。我们结合了1960年代核弹测试生产的新的放射性碳(14 C)和模型模拟,以评估陆地植被中的碳循环。我们发现,耦合模型对比项目中使用的大多数最先进的植被模型低估了植被生物量的14 C积累。我们的发现,加上对植被碳储备和生产力趋势的限制,这意味着目前净初级生产率可能至少为80 pgc/yr,而当前模型预测的43-76 pgc/yr。在陆地植被中存储人为碳的储存可能比以前预测的更短暂和脆弱。
原始生殖细胞(PGC)是配子的胚胎前体。在小鼠和大鼠中,PGC可以通过形成胚胎生殖细胞(EGC)轻松地在体外获得多能性。迄今为止,尽管人类PGC(HPGC)在生殖细胞肿瘤发生的背景下很容易经历多能转化,但在人类中尚未建立可比的体外系统。在这里,我们报告说,HPGC样细胞(HPGCLC)在暴露于先前用于得出小鼠EGC的相同感应信号后经历人类胚胎类细胞(HEGCLC)。这种定义的无馈物培养系统允许有效地推导人EGCLC,可以在标准的人类多能干细胞培养基中扩展和维持。HEGCLC在转录上与人类多能干细胞(HPSC)相似,并且可以区分所有三个细菌层,并再次引起PGCLC,证明了多能状态的互助性。这在表观遗传水平上也很明显,因为在HPGCLC中发生的初始DNA脱甲基化在HEGCLC中很大程度上逆转,将DNA甲基恢复到HPSC中观察到的水平。这种新的体外模型捕获了从多能干细胞状态到生殖细胞身份并再次返回的过渡,因此代表了一个高度可牵引的系统,用于研究多能和表观遗传转变,包括在人类生殖细胞肿瘤发生过程中发生的多能和表观遗传转变。