神经囊虫病 (NCC) 是一种以猪肉绦虫 Taeniasolium 的幼虫阶段寄生入侵中枢神经系统 (CNS) 为特征的疾病。它是中枢神经系统最常见的寄生虫病。该病是一种人畜共患病,属于世界卫生组织 (WHO) 归类为被忽视的热带病 (NTD) 的疾病组。人类通过摄入被粪便污染的水或食物中的绦虫卵而获得感染 [1]。另一种感染途径是通过感染成年绦虫的人的受污染手指从肛门直接感染到口腔,形式为自身感染或人际传播 [2]。从摄入的卵中孵化出的幼虫主要寄生在大脑、肌肉和其他软组织中 [3]。在脑中,幼虫经常寄居在脑实质内,但也经常寄居在脑室和蛛网膜下腔内,或三者兼而有之 [3]。临床表现取决于幼虫的位置。感染点和发病之间的时间间隔各不相同
摘要 - 近年来,强化学习和进化学习表现出了控制人形机器人运动的巨大潜力。但是,这些方法通常会为特定任务创建模拟环境和奖励,从而产生了多种策略和限制功能的要求,以解决复杂和未知任务。为了克服这些问题,我们提出了一种新颖的方法,将对抗性模仿学习与大语言模型(LLMS)相结合。这种创新方法使代理商可以通过单个政策学习可重复使用的技能,并在LLMS的指导下解决零拍摄任务。特别是,我们利用LLM作为战略规划师,通过理解特定于任务的提示,将先前学到的技能应用于新颖的任务。这使机器人能够以序列执行指定的动作。为了改善我们的模型,我们合并了基于代码的向量量化,使代理可以生成合适的操作,以响应LLM的看不见的文本命令。此外,我们设计了一般的奖励功能,考虑了人形机器人的独特运动特征,确保代理模仿运动数据,同时保持目标取向,而无需其他指导方向方法或策略。据我们所知,这是第一个使用单个学习策略网络和LLM作为计划者来控制人形机器人的框架。广泛的实验表明,我们的方法在复杂的运动任务中表现出有效和适应性的能力。
摘要:风险管理和安全是经常被提及的主导话题,尤其是在这个时期。安全管理系统 (SMS) 基于风险管理,航空运输以及其他运输方式都需要实施风险管理。事实上,乘客和工作人员的安全是每家航空公司的首要任务,这些人会面临一些常见的风险。风险识别对于成功的风险管理至关重要,因为只有识别出的风险才能得到管理。根据对已发布的框架和标准的研究,设计了一种风险识别方法,使用了一份按逻辑顺序排列的风险清单,这些风险与典型的航空活动以及该方法所处的特定环境有关。提示列表是根据背景分析编制的,该分析侧重于内部和外部背景,并以此为基础确定提示列表的结构,以便可以根据各种标准将风险从列表转移到风险登记册,以便进一步处理。该清单包含来自多个领域(经济、生态、社会、个人、商业、营销等)的风险。提示列表本身的设计还包括对其编制、使用和更新方法的提议。
摘要 - LARGE语言模型(LLM)由于能够使用简单的自然语言提示执行临时自然语言处理(NLP)任务,因此获得了广泛的普及。呼吁LLM的一部分是他们对公众的可接近性,包括NLP技术专长的人。但是,提示在语言结构,上下文和其他语义方面可能会有很大的不同,并且修改其中一个或多个方面可能会导致任务绩效的显着差异。非专家用户可能会发现确定提高提示所需的更改是一项挑战,尤其是当他们缺乏特定领域的知识和适当的反馈时。为了应对这一挑战,我们提出了p rompt iD,一个视觉分析系统,旨在通过探索,扰动,测试和迭代进行交互,完善和测试提示。p rompt a ID使用协调的可视化效果,使用户可以通过三种策略改进提示:关键字扰动,释义扰动以及获得最佳的context中文字中的最佳示例。p rompt a ID是通过涉及NLP专家的预先研究设计的,并通过强大的混合方法用户研究进行了评估。我们的调查结果表明,P ROMPT I ID可以帮助用户在认知开销较少的情况下迭代提示,并在建议的帮助下产生多样的提示,并分析生成的提示的性能,同时超过现有的最新提示提示性能的互动。
摘要:大语言模型(LLM)正在重塑机器学习(ML)应用程序开发的景观。能够执行各种任务的多功能LLM的出现降低了人类参与培训和维护ML模型的必要性。尽管有这些进步,但出现了一个关键的问题:这些广义模型是否可以否定对特定于任务模型的需求?本研究通过比较LLM在检测网络钓鱼URL中的有效性与迅速工程技术相对于微调时的有效性来解决这个问题。值得注意的是,我们探讨了用于网络钓鱼URL检测的多种及时工程策略,并将它们应用于两个聊天模型,即GPT-3.5-Turbo和Claude 2。在这种情况下,通过使用1000个样本的测试集,获得的最大结果是92.74%的F1评分。之后,我们对包括GPT-2,BLOOM,BABY LLAMA和DISTILGPT-2在内的一系列基本LLM进行了微调(主要是用于文本生成)的,用于网络钓鱼URL检测。微调方法最终达到了峰值性能,在同一测试集上达到了97.29%的F1分数和99.56%的AUC,从而优于现有的现有先进方法。这些结果表明,尽管LLM通过及时的工程来实现,但可以加快应用程序开发过程,实现不错的表现,但它们不如专用的,特定于任务的LLM。
摘要。利用大型视觉模型(VLM)的有效表示来完成各种下游任务,引起了人们越来越多的关注。在该研究领域中,软提示学习已成为有效地适应VLM(例如剪辑)的代表性方法,例如图像分类。但是,大多数现有的及时学习方法都学习无法解释的文本令牌,这些文本令牌无法满足医疗保健等高风险场景中可解释的人工智能(XAI)的严格解释性要求。为了解决这个问题,我们提出了一个新颖的可解释的提示学习框架,该框架通过在多个差异方面对齐图像,可学习的提示和临床概念驱动的提示来利用医学知识。此外,我们的框架通过从大型语言模型中引起知识来解决缺乏宝贵的概念注释,并为提示提供了视觉和文字解释。在各种数据集上进行的广泛的实验和可解释性分析,有或没有概念标签,表明我们的方法同时实现了卓越的诊断性能,灵活性和解释性,并阐明了基础模型在促进XAI方面的有效性。该代码可在https://github.com/tommy-bie/xcoop上找到。
长尾的多标签视觉识别(LTML)任务是由于标签共发生和不平衡的数据分布,这是一项极具挑战性的任务。在这项工作中,我们为LTML提出了一个统一的框架,即促使特定于班级的嵌入损失(LMPT)进行调整,从而通过结合文本和im im Im operational数据来捕获语义功能相互作用,并在头部和尾部同步改进型号。具体来说,LMPT通过班级感知的软边距和重新投资介绍了嵌入式损失函数,以学习特定的班级上下文,并带有文本描述(字幕)的好处,这可以帮助建立类之间的语义关系,尤其是在头和尾部之间。fur-hoverore考虑到类失样的类别,分配平衡的损失被用作分类损失函数,以进一步提高尾部类别的性能而不会损害头部类别。在VOC-LT和可可-LT数据集上进行了广泛的实验,这表明我们的方法显着超过了先前的最新方法,而LTML中的零拍夹。我们的代码在https://github.com/richard-peng-xia/lmpt上完全公开。
1 Rise-Health,医学科学系,健康科学学院,贝拉大学内政部,AV。Infante D. Henrique,6200-506Covilhã,葡萄牙2 CNC -UC- COIMBRA大学神经科学与细胞生物学中心3 CIBB 3 CIBB- COIMBRA大学Innovative Biomedicine for Innovative Biomedicine in Center of Coimbra University,Coimbra University,Coimbra University of Coimbra 4 Cryastaminal,Cryastaminal,Sathlababababal s.a.,Portugal
于2023年12月20日收到; 2024年6月18日修订; 2024年8月20日接受。出版日期2024年8月26日;当前版本的日期2024年11月5日。这项工作得到了中国国家自然科学基金会(NSFC)的一部分,根据赠款62102099和授予U22A2054的赠款,部分由Guangzhou基础研究计划,根据Grant 2023A04J1699的赠款,一部分是由Guangdong Basic和Grant Indied Basic Research Foundation下的Grant 2023A151515151514 01137。这项研究也得到了新加坡国家研究基金会的一部分,部分由InfoComm媒体发展局在其未来的通信研发研究和发展方面的一部分,部分由国防科学组织(DSO)国家实验室根据AI新加坡计划,根据Grant FCP-NTU-RG-2022-010和Grant FCP-ASTRORE的GRANT FCP-ASTRASTAR TAIRISTION,在Grant FCP-NTU-RG-2022-010和下第1层在赠款RG87/22下,部分由NTU金融计算技术中心(NTU-CCTF)。这项研究也部分得到了Sutd SRG-ISTD-2021-165的支持,部分由Sutd-Zju的想法在Grant Sutd-Zju(VP)202102下的一部分,部分由新加坡教育部,新加坡教育部在SMU-SUTD下的22-SISSIS-SIS-SIS-SIS-SMU-048和STAIRITY pactiatiatiatiatiatiatiatiation in. Smu-sutd pransiatiatiatiatiatiations praintiatiatiatiatiatiations pransiatiatiatiatiationnif。NSF在Grant CNS-2148382下部分支持Shiwen Mao的工作。建议接受J. Ren。(通讯作者:Jiawen Kang。)
将立即通过增强的镜像视频显示,并与他们的学生一起视觉实现。以这种方式,我们的方法赋予了教学的能力,其概念的内在形式被称为角色实施例[Keevallik 2010],在该概念上,学生可以通过视觉吸引学生作为历史人物,科学专业人士或文化偶像,从而创造出更丰富,更沉浸式的学习经验,以实现的角色扮演[CarniceroerPérezet al al and。2023]。要以更高的精确度来完善和直接产生图像,这项研究特别结合了ControlNet,这是一种稳定扩散的开发,旨在增强对生成的输出的控制,从而确保视觉转换与文本提示的教育目标和提供的相机输入图像Snapshot [Zhang等人[Zhang et al》中均符合。2023]。上游,我们整合了语音识别,以将自然的口语接口与受控的导向图像生成相关。生成的AI模型,例如DALL-E或GPT4,可以从文本描述中综合高保真视觉内容。尽管它们的实用性,这些模型从根本上受到其对文本的依赖的限制,因为它们是唯一的条件输入。此约束限制了其将生成的输出调整为结构化空间输入的能力,例如深度图,语义分割掩码或姿势配置。因此,此类模型不适合需要与实时背景(例如交互式环境和实时个人化)进行精确对齐的应用。2021]。2020]。2020]与ControlNet结合[Zhang等。相比之下,ControlNet通过启用多模式输入模式(包括深度图)的整合到生成过程中来解决这一差距。深度调节是将视觉输出与参与者的物理概况(例如身体形状和空间布置)进行实时设定的关键。此功能将生成模型的适用性扩展到需要上下文和参与者特定输出的域。通过利用基于深度的调节,ControlNet促进了视觉效果的产生,这些视觉效果不仅在语义上是准确的,而且在空间上是连贯的,从而支持了新颖的应用,例如具有体现的角色扮演和沉浸式,上下文感知的教育体验。通过生成AI的角色体现与沉浸式学习的研究保持一致,当学生在教育场景中扮演角色或角色时,学生更加深入地参与。研究表明,体现历史人物的体现会发展出同理心并增强记忆力保留,因为学生与材料有着共同的联系[Miguel-Revilla等。类似地,在STEM领域,学生可以通过诸如科学家,工程师或宇航员等原型横向探索角色,这些原型将其转化为对主题的更强识别并支持持续的参与[Singer等人。更详细地探索了各种文化舞蹈风格,作为教学场景,以更直接的舞蹈学生与视觉体现的教学环境联系起来。本文采用了稳定扩散的机制引入了一个框架[Ho等。2023]实现适用于教学环境中的有针对性的特定角色转换。这种集成使受控的视觉自定义符合教室内成像的人类形式,从而使教育工作者可以设计具有与各种主题的教育目标相吻合的沉浸式,上下文准确的体验。本文的主要技术贡献是: