摘要:医学成像在医疗保健中起着至关重要的作用,其中磁共振成像 (MRI) 和计算机断层扫描 (CT) 是主要模式,每种模式都有其独特的优点和缺点。MRI 提供出色的软组织对比度,但速度慢且成本高,而 CT 速度更快但涉及电离辐射。为了解决这一矛盾,我们利用深度学习,采用 CycleGAN 将 CT 扫描转换为类似 MRI 的图像。这种方法消除了额外的辐射暴露或成本。我们的结果显示了我们的图像转换方法的有效性,MAE 为 0.5309,MSE 为 0.37901,PSNR 为 52.344,证明了本发明在降低医疗保健成本、扩展诊断能力和改善患者结果方面的前景。该模型在 Nvidia GPU RTX A6OOO 上训练了 500 个时期,批次大小为 500。
摘要。目的:本研究提出了一种新颖的回顾性运动减少方法,即运动伪影 11 无监督解缠生成对抗网络 (MAUDGAN),该方法可减少来自肿瘤和转移性脑图像的运动伪影。MAUDGAN 使用多模态多中心 3D T1- 13 Gd 和 T2 流体衰减反转恢复 MRI 图像进行训练。方法:在 k 空间中为 3D T1-Gd MRI 图像模拟具有不同伪影 14 级别的运动伪影。MAUDGAN 由使用残差块构建的两个生成器、两个鉴别器和两个特征提取器网络组成。生成器将图像从内容空间映射到伪影空间,反之亦然。另一方面,鉴别器试图 17 区分内容代码以学习无运动和运动损坏的内容空间。结果:我们将 MAUDGAN 与 CycleGAN 和 Pix2pix-GAN 进行了比较。从定性上讲,MAUDGAN 可以消除软组织对比度最高的运动,而不会增加空间和频率失真。从定量上讲,我们报告了六个指标,包括归一化均方误差 (NMSE)、结构相似性指数 (SSIM)、多尺度结构相似性指数 (MS-SSIM)、峰值信噪比 (PSNR)、视觉信息保真度 (VIF) 和多尺度梯度幅度相似性偏差 (MS-GMSD)。MAUDGAN 获得了最低的 NMSE 和 MS-GMSD。平均而言,所提出的 MAUDGAN 重建的无运动图像具有最高的 SSIM、PSNR 和 VIF 值以及可比的 MS-SSIM 值。结论:MAUDGAN 可以在多模态框架下从 3D T1-Gd 数据集中分离出运动伪影。运动减少将改善自动和手动 26 后处理算法,包括自动分割、配准和引导治疗(例如 27 放射治疗和手术)的轮廓勾画。28
摘要。密码学和隐身志摄影是信息安全性的两个主要组成部分。利用加密和隐身来建立许多保护层是一种值得称赞的方法。我们本文的主要目的是通过密码和隐身术的结合来构建一种综合方法,以安全地传输数据。密码学和隐身志学是秘密传输信息的两种常见方法。rc4在本文中用于将信息从明文更改为密码,然后将密码文本集成到图像中至少有显着位(LSB)。结果是根据处理时间,峰值信号 - 噪声比率(PSNR)和均方误差(MSE)定义的。实验结果表明,Stego图像的可接受质量,并将两种技术结合起来为原始隐肌提供了额外的安全性。
在这个现代时代,由于数字化的扩大而在未经许可的情况下复制,出售和复制版权所有者的作品变得更加简单,很难确定这种违规行为,对创造者的权利和版权所有的权利构成威胁。多年来,互联网一直被视为对版权的最严重威胁之一,并且可用的内容具有不同水平的版权保护。在互联网上,有许多受版权保护的作品,包括电子书,电影,新闻等。因此,通过使用水印和隐志技术,可以解决这些问题,这些问题基于作者的签名信息或徽标。本文得出的结论是,离散余弦变换(DCT),离散小波转换(DWT),一次性PAD(OTP)(OTP)和Playfair的技术在使用图像或嵌入秘密信息时非常有效。 (MSE),信噪比(SNR)和峰值信噪比(PSNR)。
来自多个中心的大脑磁共振成像(MRI)数据通常在成像条件下表现出差异,例如所使用的核磁共振仪器的类型和随机噪声的存在。此外,MRI切片之间差距的差异进一步使数据的可用性复杂化了高级人工智能(AI)分析。基于深度学习的方法已成为解决挑战的实用解决方案。然而,现有的研究在很大程度上忽略了大脑MRI数据的增强,尤其是在面对明显的切片间隙时,例如在我们的临床大脑MRI切片中观察到的大约6 mM。响应这一研究差距,我们旨在开发新的方法来增强大脑MRI数据,重点关注更大的切片差距。为了实现这一目标,我们提出了SOFNET,它利用了基于光流和编码器 - 二次骨架的sofnet。我们模型的主要目标是插值MRI切片,同时保持特征一致性。利用光流法,与其他超分辨率算法相比,该方法表现出了出色的性能,我们提出的方法已在三个不同的大脑MRI数据集上进行了评估,并明确解决了4.2 mm和6.0 mm之间的差距。实验结果强调了SOFNET在生成适应的脑MRI数据方面获得的超分辨率质量的显着增强,超过了其他单位超级分辨率(SISR)方法。为了确保插值脑MRI切片的可信度,我们基于诸如峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标(例如峰值信噪比(PSNR))对三个MRI进行了实验。这些实验证明了我们方法在将低分辨率MRI数据转换为清晰可靠的大脑MRIS中的有效性,从而可以使用AI技术进行了改进的分析。
摘要这项研究介绍了一种新颖且可靠的水印方案,用于医学脑MRI DICOM图像,以同时解决高度不可识别和鲁棒性的挑战。该计划确保隐私控制,内容身份验证和防止重要的电子患者记录信息的脱离。为增强了不可识别的性,引入了动态可见性阈值参数。可嵌入的区域和不可安装的区域被定义为增强鲁棒性,并且基于slantlet Trans-形式的增强的骑士旅行算法将嵌入序列置于增加安全性。该方案以超过当代技术的峰值信噪比(PSNR)评估,取得了显着的结果。广泛的实验证明了对各种攻击的韧性,较低的位错误率(BER)和高归一化互相关(NCC)值。所提出的技术优于现有方法,强调其在医学图像水印中的出色性能和有效性。
在本研究中,我们使用 ML 算法和图像处理方法从 MRI 中提取数据。我们使用预处理来提高信噪比 (S/N) 并消除不必要的噪声的影响。基于阈值技术,我们使用颅骨剥离算法来增强颅骨剥离性能。在这项研究中,我们使用公认的分类器分析了基于纹理的特征,以对 MRI 图像中的脑肿瘤进行分类。从结果来看,与临床专家进行的手动识别相比,脑肿瘤识别显然是快速而准确的。各种执行因素还表明,建议的算法通过改进某些参数(如平均值、MSE(均方误差)、PSNR、准确度、灵敏度、特异性和骰子系数)提供了有效的结果。我们的结果表明,计划的方法可以帮助及时准确地检测脑肿瘤,并识别其精确位置。因此,使用 ML 和 NLP,提出的系统对于从 MRI 图像中识别脑肿瘤具有重要意义。
我们的目的是评估低剂量(LD)PET图像和辛图中的全剂量(FD)PET图像合成的性能,而无需使用深度学习技术牺牲诊断质量。方法:回顾性使用140例患者的临床脑PET/CT研究。从FD列表模式PET数据中随机选择了5%的事件,以模拟现实的LD采集。促进了一个修改的3维U-NET模型,以分别从相应的LD辛图和图像中预测图像空间(PIS)中的投影空间(PSS)和FD图像中的FD曲目。使用5分评分方案评估了2个核医学专家的预测PET图像的质量。使用已建立的指标进行定量分析,包括峰值信噪比(PSNR),结构相似性指数指标(SSIM),区域性SUV偏置以及83个大脑区域中的第一,第二和高阶纹理放射线特征,用于测试和评估数据集中的83个大脑区域。结果:所有PSS图像均由核医学专家评分4或更高(良好至优秀)。PSNR和SSIM值分别为0.96±0.03和0.97±0.02,PSS分别获得了31.70±0.75和37.30±0.71的值。在所有大脑区域中计算出的平均SUV偏置分别为PSS和PI分别为0.24%±0.96%和1.05%±1.44%。与参考FD图像相比,PSS的平淡 - Altman图报告了PSS的最低SUV BI- AS(0.02)和方差(95%的置次间隔,-0.92至1 0.84)。PIS和PSS分别属于灰级共振矩阵类别的同质性放射线特征的相对误差分别为-1.07±1.77和0.28±1.4。结论:定性评估和定量分析表明,FD PET PSS提高了性能,从而提高了图像质量,而SUV偏置和方差较低,而SUV PET和差异要比FD PET PIS。
摘要目的:多发性磁共振(MR)图像的存在增加了可用于诊断和治疗脑癌患者的临床信息水平。但是,获取完整的多元图像MR图像的完整集并不总是可行的。在这项研究中,我们开发了一种最先进的深度学习卷积神经网络(CNN),用于跨三个标准的MRI对比度,用于大脑的三个标准MRI对比度。方法:在本研究中使用了477例临床诊断患有神经胶质瘤脑癌的477例患者的BRATS'2018 MRI数据集,每位患者患有T1加权(T1),T2加权(T2)和FLAIR对比度。分别将其分别分为64%,16%和20%,分别为培训,验证和测试集。我们开发了一个U-NET模型,以学习与三个MRI对比度的目标图像对比的源图像的非线性映射。使用于点误差(MSE)成本函数,0.001学习率的ADAM优化器和120个时期,批次大小为32。通过计算MSE,平均绝对误差(MAE),峰值信噪比(PSNR)和结构相似性指数(SSIM)来评估生成的合成MR图像。结果:与我们的模型一起生成的合成-MR图像几乎与测试数据集上的真实图像有关所有翻译的区别,除了合成的素质图像的质量略低,并且显示出细节的丢失。我们的结果与Brats数据集上其他深度学习模型的最佳报告结果一样好。六个翻译中平均PSNR,MSE,MAE和SSIM值的范围分别为29.44–33.25 dB,0.0005–0.0012,0.0086–0.0149和0.932–0.946。结论:我们的U-NET模型表明,它可以在跨大脑MRI对比度上准确地执行图像图像翻译。由于多重激发MRIS的可用性,这种方法可能在改善临床决策和更好地诊断脑癌患者的临床使用方面具有很大的希望。这种方法可能在临床上相关,并设定明显的步骤以有效地填充没有其他MR序列的缺乏空隙。
摘要提出了一种新的稀疏 - 视图计算机断层扫描重建方法,该方法利用了变压器网络的恢复能力,特别是基于Swin Transformer的图像重建网络SWINIR。我们的方法包括三个关键块:通过线性插值来提高采样,使用两者中深度学习的初始重建以及残留的细化。测试了两个架构:一个长期的架构,该结构在残留细化块的两个域中使用神经网络,而在正式结构域中仅使用网络的网络进行了简短。用swinir和u-net测试了每种方法,从而产生了四种变体,所有这些方法在PSNR和SSIM方面都优于FBP和SIRT(例如FBP和SIRT)。使用Swinir的短体系结构取得了最佳结果,其训练和计算时间小于基于Swinir的长架构,但比两个基于U-NET的变体都大。