将正电子发射断层扫描(PET)用作β-淀粉样蛋白(Aβ)脑病理学的初始或唯一生物标志物可能会抑制阿尔茨海默氏病(AD)由于成本,获取和耐受性而引起的药物开发和临床使用。我们开发了一种QEEG-ML算法,以预测主观认知下降(SCD)和轻度认知障碍(MCI)患者之间的β病理,并使用βPET验证了它。我们比较了MCI患者与患有和没有PET固定的β-淀粉样蛋白斑块患者之间的QEEG数据。We compared resting-state eyes-closed electroencephalograms (EEG) patterns between the amyloid positive and negative groups using relative power measures from 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2), divided into eight frequency bands, delta (1-4 Hz),theta(4-8 Hz),Alpha 1(8-10 Hz),Alpha 2(10-12 Hz),β1(12-15 Hz),β2(15-20 Hz),Beta 3(20-30 Hz)和gamma(30-45 Hz),由Fft和DeNocy cancys cancys concy.s.使用遗传算法策略分析了所得的152个特征,以识别最佳特征组合并最大程度地提高分类精度。在基因建模方法的指导下,我们将脑电图的每个通道和频率带作为基因,并在给定维度内用所有可能的组合对其进行了建模。然后,我们收集了显示出最佳性能并识别出在上级模型中最常出现的基因的模型。通过重复此过程,我们收集了一个近似最佳的模型。我们发现,随着遗传算法的这种迭代发展的发展,平均性能的增加。我们最终达到了85.7%的敏感性,89.3%的特异性,SCD淀粉样蛋白阳性/负分类的精度为88.6%,83.3%的敏感性和83.3%的敏感性,85.7%的特异性特异性,而MCI MCI淀粉样蛋白淀粉样蛋白阳性阳性/负分类的精度为84.6%。
摘要 - 在事件相关的电位(ERP)信号分类中,在特定时间范围内识别相关的局部峰对于特征提取和随后的分类任务至关重要,尤其是在有关精神分裂症等精神疾病的研究中。但是,精神分裂症研究中的ERP数据通常包含许多对分类过程贡献的小峰。因此,至关重要的是,仅辨别和保留为改进分类结果传达特定特征的显着峰值。最近,基于高档和降尺度表示(UDR)技术的基于视觉的平滑算法已经证明了其在保留突出峰的特征时的有效性,同时从信号波形中滤除了非平衡峰。在UDR的操作下,输入信号在图像域中可视化。输入形状受到稀疏算法的影响,并将所得骨骼投射回信号域。此过程类似于神经科医生对信号的目视检查,在该信号中标记了突出的峰,而无关的峰被忽略了特征提取。这项研究将UDR应用于两个精神分裂症和匹配对照患者中记录的ERP的数据集,以评估其在信号分类中的有效性。此外,当使用较少的ERP通道时,我们分析了UDR对分类准确性的影响。我们使用多个分类器测试了这些效果。索引项 - 与事件相关电位(ERP),精神分裂症,平滑过滤器,信号处理,UDR,高档和下限表示实验结果表明,当在所有通道上应用UDR时,EEGNET表现出最显着的增强,精度增加了2.55%。此外,当信号时期的数量减半时,UDR在7个模型中有4个促进了增强,浅孔convnet的提高最高2.4%。值得注意的是,在仅FZ,CZ和PZ电极位置的信号形成的子数据集中使用UDR时,可以在更多模型上观察到精度增强。这些发现强调了UDR在增强精神分裂症分类准确性方面的有希望的潜力,尤其是应用于关注关键通道的数据集时。
潜在利益冲突 美敦力、波士顿科学和雅培是生产植入研究对象的 DBS 系统的设备制造商,存在潜在利益冲突。佛罗里达大学已获得美敦力、波士顿科学和雅培的资助,但作者对这些资助有经济利益。ARZ 是美敦力和波士顿科学的顾问。IUH 曾为波士顿科学进行研究,并为波士顿科学和美敦力提供咨询。JLO 获得波士顿科学和美敦力的资助,为美敦力和雅培提供咨询,并获得波士顿科学的非财务研究支持。MSS 获得波士顿科学的资助,并获得波士顿科学作为科学顾问的酬金/非财务支持。作为佛罗里达大学运动障碍研究金的主任,CWH 获得了行业资助,用于研究金计划的教育支持,这些资助直接支付给佛罗里达大学,仅用于美敦力、波士顿科学和雅培的研究员工资支持。 MHP 已从美敦力、波士顿科学和雅培获得咨询费。MSL 已从波士顿科学获得咨询费。CRB 已从波士顿科学和雅培获得咨询费,他拥有与 DBS 相关的知识产权。KDF 已从美敦力和波士顿科学获得 DBS 相关工作的不定期咨询费。佛罗里达大学已从美敦力获得 KDF DBS 相关研究的植入式设备,但不包括本次试验。佛罗里达大学从美敦力获得 KDF 功能性神经外科研究金的部分资金。KDF 拥有三项 DBS 相关专利,但他未获得任何版税。KDF 曾作为现场植入外科医生参与雅培和波士顿科学赞助的多中心 DBS 相关研究。MV 已从美敦力获得咨询费。PZ 已作为顾问和美敦力顾问小组成员获得酬金。JJS 已从美敦力和雅培获得研究支持,并从美敦力、雅培和波士顿科学获得咨询费。
33.2 一款低于 1 µ J/级的集成思维意象与控制 SoC,适用于 VR/MR 应用,具有师生 CNN 和通用指令集架构 Zhiwei Zhong*、Yijie Wei*、Lance Christopher Go、Jie Gu 西北大学,伊利诺伊州埃文斯顿 * 同等署名作者 (ECA) 虚拟现实 (VR) 和混合现实 (MR) 系统,例如 Meta Quest 和 Apple Vision Pro,最近在消费电子产品中引起了极大的兴趣,在游戏、社交网络、劳动力援助、在线购物等元宇宙中掀起了新一波发展浪潮。AI 计算和多模块人类活动跟踪和控制方面的强大技术创新已经产生了身临其境的虚拟现实用户体验。然而,大多数现有的 VR 耳机仅依靠传统的操纵杆或基于摄像头的用户手势进行输入控制和人体跟踪,缺少一个重要的信息来源,即大脑活动。因此,人们对将脑机接口 (BMI) 整合到 VR/MR 系统中以供消费者和临床应用的兴趣日益浓厚 [1]。如图 33.2.1 所示,现有的集成 EEG 通道的 VR/MR 系统通常由 VR 耳机、16/32 通道 EEG 帽、神经记录模拟前端和用于信号分类的 PC 组成。此类系统的主要缺点包括:(1)佩戴麻烦且用户外观不佳,(2)缺乏低延迟操作的现场计算支持,(3)无法根据大脑活动进行实时思维意象控制和反馈,(4)由于 AI 分类导致的功耗高。为了克服这些挑战,这项工作引入了一种思维意象设备,该设备集成到现有的 VR 耳机中,而无需为 VR/MR 系统的思维控制 BMI 增加额外的佩戴负担。本研究的贡献包括:(1)支持 VR/MR 系统现场心智意象控制的 SoC,(2)与现有 VR 耳机无缝集成并优化 EEG 通道选择,以提高用户接受度和体验,(3)具有灵活数据流的通用指令集架构 (ISA),支持广泛的心智意象操作,(4)混淆矩阵引导的师生 CNN 方案,可在 AI 操作期间节省电量,(5)EEG 信号的稀疏性增强以降低能耗。制造了 65nm SoC 测试芯片,并在各种基于心智意象的 VR 控制上进行了现场演示。虽然先前的研究涉及基于 EEG 的癫痫检测或类似的生物医学应用 [2-6],但本研究专注于 VR/MR 环境中的新兴 BMI。得益于低功耗特性和设计的系统级优化,SoC 的数字核心在计算密集型 CNN 操作中实现了 <1μJ/类的能耗。图 33.2.2 显示了 EEG 通道选择和集成到 Meta Quest 2 VR 耳机中,在准确性和用户便利性之间进行了权衡。为了支持各种思维意象任务,8 个 EEG 通道 T3、T5、O1、O2、T6、T4、PZ、和 CZ 被选中并巧妙地融入头带以保持用户的美感。不同的心理任务会激活八个选定通道的子集,例如用于心理意象的 T3/T5/CZ/T4/T6、用于情感(例如情绪)监测的 T5/CZ 或用于稳态视觉诱发电位 (SSVEP) 的 O1/O2/PZ。通道的减少导致三个主要任务的平均准确率略有下降(从 90.4% 下降到 85.2%),但显着提高了用户体验和可用性。带有生理盐水的商用 Hydro-link 电极用于通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。多达 16 个可编程通道的 AFE 用于信号采集和数字化。 AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分或 O1/O2/PZ 用于稳态视觉诱发电位 (SSVEP)。通道数的减少导致三个主要任务的平均准确度略有下降(从 90.4% 降至 85.2%),但显著提高了用户体验和可用性。使用带有生理盐水的商用 Hydro-link 电极通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。最多 16 个可编程 AFE 通道用于信号采集和数字化。AFE 的每个通道包括一个增益为 45 至 72dB 和带宽为 0.05 至 400Hz 的两级斩波放大器、一个转折频率为 60Hz 的低通滤波器和一个工作频率为 128Hz 至 10kHz 的 8b SAR ADC。集成 AI 操作的数字核心包括 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维想象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有工作仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维想象任务。图 33.2.3 显示了专门开发的用于数据流控制、模型配置、通道选择等的通用 ISA。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有高硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统收缩阵列不同,此设计有意消除了大部分或 O1/O2/PZ 用于稳态视觉诱发电位 (SSVEP)。通道数的减少导致三个主要任务的平均准确度略有下降(从 90.4% 降至 85.2%),但显著提高了用户体验和可用性。使用带有生理盐水的商用 Hydro-link 电极通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。最多 16 个可编程 AFE 通道用于信号采集和数字化。AFE 的每个通道包括一个增益为 45 至 72dB 和带宽为 0.05 至 400Hz 的两级斩波放大器、一个转折频率为 60Hz 的低通滤波器和一个工作频率为 128Hz 至 10kHz 的 8b SAR ADC。集成 AI 操作的数字核心包括 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维想象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有工作仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维想象任务。图 33.2.3 显示了专门开发的用于数据流控制、模型配置、通道选择等的通用 ISA。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有高硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统收缩阵列不同,此设计有意消除了大部分AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。可以通过在不同数据流中重用相同的 PE 阵列来专门执行 CNN、FC、DFT 和 IIR 滤波操作,例如,Conv 层的权重平稳,或 FC 层和 DFT 的输出平稳。与传统的脉动阵列不同,该设计特意移除了大部分IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。可以通过在不同数据流中重用相同的 PE 阵列来专门执行 CNN、FC、DFT 和 IIR 滤波操作,例如,Conv 层的权重平稳,或 FC 层和 DFT 的输出平稳。与传统的脉动阵列不同,该设计特意移除了大部分
这种药物得到了增强,这使您可以快速识别新的药物安全信息。卫生专业人员要求任何假定的副作用。您可以获取有关如何在第4.8节中报告副作用的更多信息。1。Qdenga粉末和溶剂溶液的药物名称用于注射QDenga粉末和溶剂溶液,用于在高级注射器四龙甲霉素(Live,stenatual)2定性和定量成分1剂量(0.5 ml)包含:登革热病毒,血清型1(活,衰减)*:≥3.3log 10 pfu **/剂量登革热病毒,血清型2(Live,nive,attenated)#≥2.7log 10 pfu **/dose **/dos (实时,附件)*:≥4.0log 10 Pfu **/登革热病毒的剂量,血清型4(实时,附件)*:≥4.5log 10 pfu **/剂量*在Vero细胞培养中,重组DNA技术。是一种血清型登革热病毒2的遗传材料,具有编码基因的血清型特异性表面蛋白。此制剂包含转基因的生物(GMO)。#VERO是通过重组DNA技术在细胞培养中生产的。** PFU =斑块地层单元有关辅助材料的完整列表,请参见第6.1节。3。药物粉和注射溶液。解锁疫苗之前,是白色或几乎白色的冷冻干粉(紧凑型盘)。溶剂是一种干净,无色的液体。4。QDenga应按照官方建议应用。临床特征4.1 Qdenga的治疗指示可防止4年及以上的人登革热。根据两剂(0和3个月),应将Qdenga的剂量和4岁以上的人的剂量和剂量用于0.5 ml。提醒剂量的需求。