毛细血管本质上是无处不在的,直接参与了生活系统的功能。[1]天然多孔培养基的特征是随机(例如,土壤,海绵)或有序(例如木材,肺)结构。他们的人造顾问在大多数行业,例如过滤器,瓷砖(编织和非织造),吸收剂,陶瓷或组织脚手架中广泛采用。[2]工程设计了多孔材料的毛细管特性,以提高热量,[3]机械,[4]电气,[5]光学,[6]和生物医学[7]性能。除了本质上多孔的材料(例如,金属有机框架[8])外,该研究还集中在制造过程上,这些工艺可以很好地构成物质添加(例如3D打印[1,9])或去除(例如,从Bulking [6,10])从Bulk buts from Bulk Interal in Bulk Interipition from bualte interctuction。具有工程多功能性的多孔材料对被动能源转换设备特别希望。这些设备通常不需要高质量的能源输入,并且由于没有移动机械零件,需要低维护,并且具有成本效益。此外,它们对于离网装置是最佳的,通常,它们促进了与水能Nexus相关的行业的可持续过渡。[11]这些设备可以利用多孔毛细管介质克服小液压头并在整个系统中提供工作流体,而无需进行主动的机械或电气组合。[19]这些材料提供了有限的优化程度已经提出了用于蒸汽产生的应用,[12]淡化,[13,14]盐沉淀,[15]水卫生,[16]太阳能热能收集,[6]和冷却,[17]等。清楚地,优化这种被动设备中多孔材料的毛细血管特性对于提高其整体性能至关重要:较差的毛细管可能会导致连续蒸发过程中的干燥,并且会显着限制最大可实现的设备尺寸。[18]因此,亚最佳毛细血管特性将显着阻碍系统总体的生产率和尺度能力。被动能量转换设备通常使用非构成毛细管材料(例如纸张或商业纺织品)作为移动工作流体的被动组件。
©2021 Jackson Lewis P.C.此材料仅用于信息目的。这不是构成法律建议,也不是在杰克逊·刘易斯和任何接收者之间建立客户律师的关系。收件人应根据此
图3。CMR对可疑冠状动脉疾病患者的有用性。根据国际准则,患有慢性冠状动脉综合征(CC)的患者患有缺血性疾病的患者不需要进一步研究。但是,出现CCS和中间(INT)患有CAD的患者可能会接受功能测试。最后,患有CAD或出现ACS患者的患者应直接进行侵入性冠状动脉造影。cmr,特别是带有定量灌注的CMR,可以覆盖所有这些患者。ACS:急性冠状动脉综合征,CAD:冠状动脉疾病,CMD:冠状动脉微血管疾病,Minoca:非刺激性冠状动脉动脉的心肌梗塞,WMA:壁运动异常。
Blaise Ravelo 1,(成员,IEEE),Samuel Ngoho 2,Glauco Fontgalland 3,(高级会员,IEEE),Lala Rajaoarisoa 4,(成员,IEEE),Wenceslas Rahajandraibe 5 IEEE),Fayu Wan 1,(成员,IEEE),Junxiang GE 1,(IEEE副成员)和SébastienLalléchère7,(成员,IEEE)1电子和信息工程学院Nanjing信息科学与技术大学NANJING 210044,ELANGIED(APSIS 2 PARAGE),75017, Laboratory, Federal University of Campina Grande, Campina Grande 58429, Brazil 4 IMT Lille Douai, Research unit in computer science and automatic, University of Lille, 59000 Lille, France 5 Aix-Marseille Univ, Univ Toulon, CNRS, IM2NP, Electromagnetic Compatibility Laboratory, Missouri University of Science and Technology, Rolla, MO 65401, USA 7 Institut帕斯卡(Pascal
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。
I.机器人技术的演变以及物理人类机器人相互作用(PHRI)的最新进展倾向于朝着机器人机制和控制策略的面向人类方向设计。在此框架中,表征人类操作员的行为成为关注的中心,尤其是在人类机器人协作系统的情况下。即使在确定的环境中运行时,与人类操作员相比,完全自动化的机器人系统在精确,可重复性和负载能力方面表现出更高的性能,许多任务都需要在未预测的事件的情况下进行快速判断和适应的能力。在这种情况下,协作系统旨在结合机器人力量和精度,以及操作员的判断和灵活性。随着协作机器人的开发(称为Cobots),人类机器人的合作已成为在多个应用程序[1]或机器人辅助医疗干预(例如康复机器人)[2] [2] [2] [2]等多个应用领域中至关重要的研究主题。在协作场景中,以最佳方式处理物理接触的问题是一个关键问题。这通常可以通过控制机器人及其环境之间相互作用的合规性来获得,从而导致经典阻抗
毛细管现象在自然界中无处不在,直接参与生命系统的功能。[1] 天然多孔介质的特点是随机(如土壤、海绵)或有序(如木材、肺)结构。人造毛细管介质种类繁多,广泛应用于大多数行业,如过滤器、纺织品(编织和非编织)、吸收剂、陶瓷或组织支架。[2] 人们一直致力于改造多孔材料的毛细管特性,以实现改进的热学、[3] 机械学、[4] 电学、[5] 光学[6] 和生物医学 [7] 性能。除了本质上多孔的材料(如金属有机骨架 [8] )之外,最近的研究还集中于可以精细控制材料添加(如 3D 打印 [1,9] )或从块体材料中去除(如激光蚀刻 [6,10] )的制造工艺,以设计精确的孔隙结构。具有多功能工程设计的多孔材料特别适用于被动式能量转换装置。这些装置通常不需要高质量的能量输入,而且由于没有移动的机械部件,维护成本低,而且具有成本效益。此外,它们最适合离网安装,并且总体上可以促进与水能关系相关的行业的可持续转型。[11] 这些装置可以利用多孔毛细管介质来克服小水头,并在无需主动机械或电气部件的情况下为整个系统提供工作流体。已提出将其应用于蒸汽发电、[12] 海水淡化、[13,14] 盐沉淀、[15] 水卫生、[16] 太阳能热能收集 [6] 和冷却 [17] 等。显然,优化此类被动装置中多孔材料的毛细管特性对于提高其整体性能至关重要:毛细管特性差可能导致连续蒸发过程中干燥,并会严重限制可实现的最大装置尺寸。[18] 因此,毛细管特性不佳会严重阻碍整个系统的生产率和可扩展性。被动能量转换装置通常使用非结构化毛细管材料(如纸或商用纺织品)作为移动工作流体的被动组件。[19] 然而,考虑到
Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Frank Elliot Sahoa 5,Glauco Fontgalland 6,IEEE 高级会员,Hugerles S. Silva 7,8,IEEE 会员,Samuel Ngoho 9,Fayrouz Haddad 2,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学(NUIST),电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学,CNRS,土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系, 01026 Zilina, 斯洛伐克 4 电信系,电气工程和计算机科学学院,VSB 俄斯特拉发技术大学,70800 俄斯特拉发,捷克共和国 5 Laboratoire de Physique Nucléaire et Physique de l'Environnement (LPNPE), Université d'Antananarivo, Antananarivo 101, Madagascar 6 联邦大学Campina Grande,应用电磁和微波实验室,Campina Grande/PB,58429,巴西 7 Instituto de Telecomunicações and Departamento de Eletrónica,Telecomunicações e Informática,Universidade de Aveiro,Campus Universitário de Santiago,3810-193 Aveiro,葡萄牙 8 巴西利亚大学电气工程系(UnB),联邦区70910-900,巴西 9 法国系统科学协会 (AFSCET),巴黎 75013,法国
被动式底板通风系统依靠风效应、热效应和压力差来诱导气流。这种气流将可能积聚在建筑物下方的污染蒸汽通过通风口排入大气。自然气流产生的通风量和被动屏障下方产生的蒸汽浓度取决于场地特定条件以及通风材料或底板对气流的阻力。被动通风系统最容易在建筑物施工前安装。虽然已经为现有结构设计了有效的被动通风系统,但其有效性取决于是否存在可渗透的底板层以及安装足够的通风输送网络的能力以及充分密封的楼板。现有结构的被动通风通常受到底板材料的渗透性和缺乏穿孔管或通风条输送系统的限制。因此,被动通风在新建建筑中最常用。在新建建筑中,排出底板土壤气体的典型方法是使用穿孔通风网络,该网络由管道或低型通风口组成,这些管道或通风口位于底板下方,并将蒸汽引导至位于中心的集气箱或管道集管。另一种有效的底板通风选项是通风地板空隙空间系统 (VSS);通风地板空隙空间系统 (VSS) 技术信息表中提供了 VSS 的详细信息。