随着近年来航空旅行的增加,乘客舒适度正成为一个重要问题。乘客不适和痛苦的一个常见原因是乘客个人空间受到侵犯。本文介绍了两项研究的结果,分别研究了乘客在个人空间侵犯(PSI)期间的环境心理特征以及PSI如何影响客舱舒适度设计。在研究1中,我们的调查显示PSI对不同性别、年龄、教育水平和人际关系的乘客的舒适度有不同的影响。从这些调查数据中,我们提取了14个PSI因素。在研究2中,建立了决策试验和评估实验室(DEMATEL)模型,以乘客舒适度为目标层,以确定14个PSI因素之间的相互关系。14个因素之间的因果关系通过因果图可视化。我们根据指标与PSI因素之间的对应关系,对14个飞机内饰设计指标进行了优先级排序。本研究的结果有助于理解PSI如何影响乘客舒适度,并提出改善飞机客舱舒适度设计的策略。
8.1 飞机制造商的初始设计标准 8.2 为增加乘客座位容量而开发的飞机变体 8.3 安装的乘客座位数量 8.4 疏散滑梯 8.5 登机楼梯 8.6 客舱乘务员座位、客舱乘务员辅助空间和辅助把手的位置 8.7 客舱乘务员直接视野 8.8 紧急出口的降级和移除 8.9 III 型和 IV 型紧急出口、通道和操作简易性 8.10 机翼上方紧急出口逃生路线和标记 8.11 III 型紧急出口的设计和开发 8.12 疏散过程中的散热要求和有毒烟雾的影响 8.13 靠近地板的紧急逃生路径照明 8.14 就座乘客的最小空间 8.15 飞机制造商的疏散程序 8.16 CS 25.803 - 大型飞机认证的疏散要求 8.17 CS 疏散要求的潜在替代方案25.803。 8.18 安装有 44 个或更少乘客座位的飞机的认证 8.19 波音 777-200 的疏散认证 8.20 可能影响运营问题的适航要求 8.21 头顶行李箱 – 行李箱尺寸和可锁行李箱的概念 8.22 外部和内部摄像头
豁免。下列情况下的人员不受这些旅行限制: - 与招募和入伍活动相关的旅行,包括基础训练、高级个人训练和前往第一个工作地点的后续旅行(包括士兵/军官横向调动)将继续前往其永久工作地点 (PDS)。- 招募人员和被分配到海军陆战队招募司令部的其他人员;被分配到海军陆战队新兵训练团的教练和海军陆战队员;以及步兵学校、军官候选人学校、基础学校和正规学习中心的教官和工作人员。- 患者及其授权陪同人员和护理人员以及医疗服务提供者为海军陆战队员及其家人提供医疗服务的旅行。- 离开 PDS 并“等待交通”的授权旅行者以及已经开始旅行(包括中途停留)的授权旅行者有权根据批准的命令继续前往最终目的地。- 在本 MARADMIN 生效期间结束 TDY 的授权旅行者有权返回其永久工作地点。- 即将退休或离职的个人。
II. 背景 几十年来,商业航空公司的飞机座位数减少一直是全国讨论的话题 1 。讨论的主要问题源于客户认为航空业一直在减少座位间距、座位大小和腿部空间,以增加座位和乘客容量 2 ,这给人的印象是航空公司降低了乘客的舒适度,并可能导致飞行期间的健康和安全问题。 1978 年国会放松对航空业的管制后,乘客座位数开始发生变化。同年,国会为了取消联邦政府对票价、航线和新航空公司市场准入等领域的控制,通过了《航空业放松管制法案》。该法案在商业航空业引入了自由市场,导致航班数量增加、票价下降、乘客数量和飞行里程增加以及航空公司合并 3 。它还为航空公司在追求盈利方面管理客舱空间的方式提供了更大的自由度。因此,为了最有效地利用符合人体工程学的客舱空间,一些航空公司已将座位间距(座位上一个点到其前方座位上同一点之间的距离)从 34/35 英寸减小到 30/31 英寸,在某些国内航班上甚至低至 28 英寸 4,具体取决于航空公司类型和所购买的票价等级
2020 年 1 月 14 日 我很高兴向大家介绍由美国运输安全管理局 (TSA) 编写的以下报告“先进的综合乘客和行李安检技术”。本报告是根据 2019 财年国土安全部拨款法案 (PL 116-6) 附带的参议院报告 115-283 编写的。该报告提供了该部门为以尽可能低的成本开发更先进的综合乘客和行李安检技术而投入的努力和资源的最新情况。该报告还包括未来 5 个财年或直到项目完成为止对所讨论的每种技术的预计资金水平,并总结了 2019-2020 财年为改善和改造航空安全所做的努力。这项工作包括改进检查站的检测、提高运营效率和乘客体验,以及进行必要的设备投资以解决漏洞并提高系统效率。根据国会的要求,本报告将提供给以下国会议员:
舒适度正成为航空公司在竞争激烈的市场中脱颖而出的重要因素。活动和姿势作为乘客与复杂客舱系统互动时的一种综合外在表现,可以作为研究乘客舒适度的有效方法。本研究旨在通过分析乘客在飞行过程中的活动和姿势来分析乘客的舒适度感知。通过记录和重建乘客在 2 小时模拟飞行中进行的活动,通过视频分析软件系统 MVTA 识别出典型活动和相应的姿势。乘客大部分时间都在进行睡眠和休息活动(34.3%),其次是使用小型电子设备(32.7%)和阅读(16.1%)。针对这些活动中的主要姿势,根据头部、背部、手臂和腿部的变化,将其编码并显示在椭圆结构图中。通过问卷调查总结了座椅和客舱带来的困难和限制。根据分析结果,从可支撑性、可调节性、实用性和美观性的角度提出了座椅设计、活动指导和布置方面的建议,以改善乘客的舒适度并创新客舱和座椅。
研究与设计方法 ................................................................................................ 10 以人为本的设计 ...................................................................................................... 10 设计思维 ...................................................................................................................... 11 参与式设计 ................................................................................................................ 12 在线调查(定性和定量) ...................................................................................... 12 专家知识获取 ............................................................................................................. 13 小组获取方法 ............................................................................................................. 13 头脑风暴 ...................................................................................................................... 14 可用性评估 ............................................................................................................. 15 基于场景的设计 ...................................................................................................... 15 角色 ...................................................................................................................... 16 问题、选项和标准 (QOC) ................................................................................ 16 原型 ......................................................................................................................
研究与设计方法 ................................................................................................................ 10 以人为本的设计 .............................................................................................................. 10 设计思维 .............................................................................................................................. 11 参与式设计 .............................................................................................................................. 12 在线调查(定性和定量) ...................................................................................................... 12 专家知识获取 ...................................................................................................................... 13 小组获取方法 ...................................................................................................................... 13 头脑风暴 ............................................................................................................................. 14 可用性评估 ...................................................................................................................... 15 基于场景的设计 ............................................................................................................. 15 角色 ............................................................................................................................. 16 问题、选项和标准 (QOC) ............................................................................................. 16 原型 ............................................................................................................................. 17 虚拟/增强现实 ............................................................................................................. 17 第 4 章 贡献 ............................................................................................................. 19
虚拟现实 (VR) 头戴设备可让佩戴者逃离现实环境,沉浸在虚拟世界中。尽管在很多日常情况下,逃离现实可能并不现实或不可接受,但航空旅行是早期采用 VR 可能非常有吸引力的一种环境。在旅行过程中,乘客长时间坐在狭小的空间内,依赖有限的椅背显示器或移动设备。本文探讨了 VR 在机上娱乐中的社会接受度和可用性。在初步调查中,我们了解了受访者对航空旅行期间 VR 头戴设备的社会接受度的态度。根据调查结果,我们开发了 VR 机上娱乐原型,并在焦点小组研究中对其进行了评估。我们的结果讨论了提高机上 VR 可接受度的方法,包括使用混合现实帮助用户在虚拟和物理环境之间转换,以及支持来自其他同地人员的干扰。
关键词 飞机客舱,热舒适度,数值模拟,PMV(预测平均投票),PPD(预测不满意百分比) 1 引言 客机客舱是一个狭窄封闭的空间,通常乘客密度较高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了巨大努力(Pang et al. 2014)。有几种方法可以研究这些区域的热舒适度。在一些研究中,使用了著名的预测平均投票(PMV)模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学(CFD)来预测局部皮肤温度并计算热舒适度。Cui et al. (2014) 在飞机客舱内进行了现场测量,绘制了空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热度并不满意,因为他们感到很热。热舒适度图表现出不均匀性;中舱温度总是较高。然而,据报道,垂直温度梯度和空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。结论是,模拟飞机客舱的整体热感觉相对较好,但据报道,局部热不适感较高。Haghighat 等人(1999 年)在 43 次商业航班中进行了测量,持续时间超过一小时,期间持续监测温度、相对湿度和二氧化碳浓度。结果表明,平均气温为
