周三,斋浦尔、科塔、奇托加尔、比尔瓦拉、阿杰梅尔、帕利、萨瓦伊马多普尔和其他几个地区均有降雨,导致许多地区气温下降。斋浦尔的天气自早晨起在晴天和多云之间波动。下午 12:30 左右,开始下小雨,下午 2 点左右转为持续降雨。到下午 2:30,首都遭遇强降雨。拉贾斯坦邦东部报告小雨伴有雷电,而拉贾斯坦邦西部天气仍然干燥。该邦最高气温出现在巴尔梅尔和贾洛尔,为 24.6 摄氏度。最低气温出现在锡卡尔,为 4.2 摄氏度。由于新的西部扰动激活,预计 1 月 15 日至 16 日该州部分地区将出现降雨或小阵雨。因此,未来 4-5 天内最低气温可能会逐渐上升。预计斋浦尔、巴拉特普尔、科塔、乌代布尔和阿杰梅尔等部分地区将出现小到中雨,伴有雷声。此外,可能出现
摘要随着对高功率密度的需求不断增长,并且为了满足极端的工作条件,研究集中在涉及低温温度下电力电子设备的性能上。本文的目的是审查功率半导体设备,被动组件,栅极驱动器,传感器,最终在低温温度下的电力电子转换器的性能。通过比较半导体材料的物理特性和商业功率半导体设备的电性能,碳化硅开关由于在低温温度下的抗性和切换时间增加而显示出明显的缺点。相反,当温度降低时,硅和氮化壳设备的性能提高了。功率半导体设备的性能上限可能会受到门驱动器的影响,与室温相比,商业替代方案在低温温度下表现出恶化的性能。此外,在低温环境中的电压和当前意义的选项是合理的。基于上述各种组件的低温性能,本文以概述了已发表的转换器的概述,这些转换器在低温环境中进行了部分或全面测试。
理解非平衡量子动力学的一个有力视角是通过其纠缠内容的时间演化。然而,除了纠缠熵的几个指导原则外,迄今为止,人们对纠缠传播的精细特性知之甚少。在这里,我们从纠缠汉密尔顿量的角度揭示了纠缠演化和信息非平衡传播的特征。我们使用最先进的数值技术结合共形场论研究了原型 Bose-Hubbard 模型的量子猝灭动力学。在达到平衡之前,发现纠缠汉密尔顿量中出现了一个电流算子,这意味着纠缠扩散是由粒子流携带的。在长时间极限下,子系统进入稳定阶段,这由纠缠汉密尔顿量动态收敛到热系综的期望值所证明。重要的是,稳定状态下的纠缠温度与空间无关,这提供了平衡的直观特征。这些发现不仅为平衡统计力学如何在多体动力学中出现提供了重要信息,而且还为从纠缠哈密顿量的角度探索量子动力学增加了一个工具。
摘要:减小尺寸为可调相变行为提供了合成途径。准备材料作为纳米颗粒会导致临界温度(T C),磁滞宽度以及一阶与二阶相变的“清晰度”引起急剧调制。从融化到超导性的这种尺寸依赖性的化学反应的微观图片仍在争论中。作为一个具有广泛意义的案例研究,我们在金属有机框架(MOF)Fe(1,2,3-3-元素)的纳米晶体中依赖于大小依赖性的自旋跨界(SCO)2,是由金属链键键在较小的颗粒中变得越来越稳定的。与散装材料相比,差量扫描量热法表明最小颗粒中T C和D H的降低约30-40%。可变的振动光谱镜头揭示了长距离结构合作的降低,而X射线衍射效果的热膨胀系数增加了三倍以上。此“声子软化”提供了一种分子机制,用于设计框架材料中尺寸依赖性行为以及理解一般相位变化。
可再生能源在世界各地电力系统中的渗透率正在提高。由于可再生能源的间歇性和波动性,需求侧管理是克服这一问题的实用解决方案。本文提出了一种用于热泵的随机模型预测控制,用于为住宅建筑提供空间供暖和生活热水消耗。连续时间随机模型用 R 语言编写,以解决模型识别方法。该方法使用家庭的传感器数据来提取建筑物的热动态。控制器参与可再生能源渗透率高的三层电力市场。建议采用三阶段随机规划,分别在日前、日内和平衡市场中,在长期、中期和短期提前通知下解锁电热灵活性。考虑到可再生能源可用性与电价之间的密切相关性,价格数据通过自回归综合移动平均线建模为概率场景。环境温度以及生活热水消耗被视为具有上限和下限的包络边界。最后,在一座 150 平方米的测试房屋中,在电价、天气变量和占用模式不确定的情况下,检查控制器的运行策略。
摘要:通过分析孕妇的年龄、心率、血氧水平、血压和体温,可以评估某些患者的风险复杂性。及早识别和分类风险变量可以减少错误,从而成功预防妊娠相关问题。孕妇风险分析可以改善产前护理,改善母婴健康,并通过使用机器学习算法(例如 LDA、QDA、KNN、决策树、随机森林、Bagging 和支持向量机)识别错误分类的观测值来优化医疗资源,这些算法对孕产妇健康风险评估具有重要影响。应用了分割验证技术,使用 800 个观测值进行训练,使用 214 个观测值进行测试。此外,使用 10 倍交叉验证技术确定了最可靠的模型。所提出的模型在准确性和效率方面优于所有其他模型,使用 10 倍交叉验证技术的支持向量机的准确率为 86.13%。本研究的目的是利用机器学习技术,通过在风险因素分析中采用分类策略来估计孕产妇健康问题的强度水平。
区域(2.5-25 毫米)。这将有助于实现适当的光谱选择性(a/e),这是评价 SSA 组成材料的参数。4 第二个要求是它的工作温度。事实上,目前 SSA 的最大工作温度限制在 600 1 C,因为超过此温度其组件就会退化。5 这严重限制了 CSP 对太阳辐射光热转换的充分利用。更高的工作温度(通常为 900 1 C )将提高发电系统的热电转换效率,而该效率受卡诺效率的限制;Zc=1Tc/Th,其中 Th 是工作温度,Tc 是环境温度6,6 从而提高了 SSA 的效率。碳化硅 (SiC) 为高温应用提供了独特的特性,可与其他 CSP 系统的工作条件兼容。 7 它重量轻,导热系数高,抗热震性能优良,强度高,氧化时能形成钝化氧化层,具有抗氧化性能,热稳定性可达B 1400 1 C。7-9
区域(2.5-25 毫米)。这将有助于实现适当的光谱选择性(a/e),这是评价 SSA 组成材料的参数。4 第二个要求是它的工作温度。事实上,目前 SSA 的最大工作温度限制在 600 1 C,因为超过此温度其组件就会退化。5 这严重限制了 CSP 对太阳辐射光热转换的充分利用。更高的工作温度(通常为 900 1 C )将提高发电系统的热电转换效率,而该效率受卡诺效率的限制;Zc=1Tc/Th,其中 Th 是工作温度,Tc 是环境温度6,6 从而提高了 SSA 的效率。碳化硅 (SiC) 为高温应用提供了独特的特性,可与其他 CSP 系统的工作条件兼容。 7 它重量轻,导热系数高,抗热震性能优良,强度高,氧化时能形成钝化氧化层,具有抗氧化性能,热稳定性可达B 1400 1 C。7-9
摘要 — 在本文中,我们报告了高迁移率 β -Ga 2 O 3 同质外延薄膜的生长温度,该薄膜的生长温度远低于金属有机气相外延的传统生长温度窗口。在 Fe 掺杂的 (010) 块体衬底上以 600 ◦ C 生长的低温 β -Ga 2 O 3 薄膜表现出卓越的晶体质量,这从测量的非故意掺杂薄膜的室温霍尔迁移率 186 cm 2 /Vs 可以看出。使用 Si 作为掺杂剂实现 N 型掺杂,并研究了 2 × 10 16 - 2 × 10 19 cm −3 范围内的可控掺杂。通过比较二次离子质谱 (SIMS) 中的硅浓度和温度相关霍尔测量中的电子浓度,研究了 Si 的掺入和活化。即使在这种生长温度下,薄膜也表现出高纯度(低 C 和 H 浓度),且补偿受体浓度非常低(2 × 10 15 cm − 3)。此外,在较低温度下生长时,可以观察到突变掺杂分布,正向衰减速度为 ∼ 5nm/dec(与在 810 ◦ C 下生长的薄膜相比,提高了 10 倍)。
近年来,人们对塔姆等离子体极化激元 (TPP) 的兴趣日益浓厚,TPP 是位于一维光子晶体 (PhC) 和金属薄膜界面处的光态 [1-10]。通过将液晶引入金属光子晶体结构,可以控制 TPP 的波长和 Q 因子 [11],从而可以通过同时改变电场和温度来控制系统的光学特性。然而,基于这种方法的装置相对较慢,因为液晶的响应时间至少为一毫秒。一种有前途的替代方案是相变材料,例如 VO2 [12-14]、GeSbTe (GST) [15-17] 和 Sb2S3 [18-20]。这些材料的光学特性在特定温度下会急剧变化,从而可以快速调制系统的光学响应。在这种情况下,切换发生在一微秒内,比基于液晶的结构快三个数量级。VO 2 的优势在于 68 C o 的低相变温度。然而,与 GST 一样,VO 2 具有高消光系数,这使其难以用于纳米光子器件。