•随机森林•梯度提升•基于直方图的梯度提升•XGBOOST•袋装•逻辑回归•SGD分类器•K-Nearest邻居•多层感知器•TABPFN
摘要:确保主动检测交易风险对于金融机构来说至关重要,尤其是在管理信用评分的情况下。在这项研究中,我们将不同的机器学习算法有效,有效地比较。The algorithms used in this study were: MLogisticRegressionCV, ExtraTreeClassifier,LGBMClassifier,AdaBoostClassifier, GradientBoostingClassifier,Perceptron,RandomForestClassifier,KNeighborsClassifier,BaggingClassifier, DecisionTreeClassifier, CalibratedClassifierCV, LabelPropagation, Deep 学习。数据集是从Kaggle存放处收集的。它由164行和8列组成。与不平衡数据集的最佳分类器是LogisticRegressionCV。精度为100.0%,进动100.0%,召回100.0%和F1得分100.0%。但是,使用平衡数据集的最佳分类器是LogisticRegressionCV。精度为100.0%,进动100.0%,召回100.0%和F1得分100.0%。
支持的 ML 算法包括:1. 监督/分类 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、逻辑回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。2. 监督/回归 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、线性回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。 3. 时间序列/预测 - 自回归综合移动平均线 (ARIMA)、长短期记忆 (LSTM)、Prophet、Seq2Seq、时间卷积网络 (TCN)、NBeats、Autoformer、TCMF。4. 时间序列/异常 - 自动编码器、DBSCAN、椭圆包络、孤立森林、K-Means、一类 SVM。
图1。深度学习技术的分类学。图改编自参考[70]。MLP: Multi-Layer Perceptron; CNN: Convolutional Neural Network; ResNet: Residual Neural Net- work; GCN: Graph Convolutional Network; GAT: Graph Attention Network; RNN: Recurrent Neural Network; LSTM: Long Short-Term Memory; GRU: Gated Recurrent Unit; SAT: Structure- Aware Transformer; GAN: Generative Adversarial Network; AE: Auto-Encoder; SAE:稀疏自动编码器; DAE:DENOISISIS AUTOCODER; CAE:CASSITIVE AUTOCONEDER; VAE:VIRIATIANIT AUTOCONECODER; SOM:自组织映射; RBM:限制性Boltzmann Machine; DBN; DBN; DBN:深信信念网络:DRL:DRL:DRL:深度强化:深度强化学习。
• 阿兰·图灵:提出了图灵测试,这是衡量机器表现出智能行为的能力的指标。• 马文·明斯基:麻省理工学院人工智能实验室联合创始人、《感知器》一书作者。 • 约翰·麦卡锡:创造了“人工智能”一词,并组织了 1956 年达特茅斯会议。• 弗兰克·罗森布拉特:开发了感知器,这是现代神经网络的前身。
This study investigates the influence of cadmium (Cd) stress on the micropropagation of Goji Berry ( Lycium barbarum L.) across three distinct genotypes (ERU, NQ1, NQ7), employ- ing an array of machine learning (ML) algorithms, including Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Gaussian Process (GP)和极端梯度提升(XGBoost)。主要动机是阐明对CD胁迫的基因型特定反应,这对农业生产力和食品安全构成了重大挑战。通过分析不同CD浓度对植物生长参数(例如增殖,芽和根长度以及根数)的影响,我们旨在开发可以在不良条件下优化植物生长的预测模型。ML模型揭示了CD暴露与植物物理学变化之间的复杂关系,MLP和RF模型显示出显着的预测准确性(R 2
一个非线性数据建模系统,其中在输入和输出之间建立复杂关系的模型或模式被称为人工神经网络(ANN)。神经网络具有卓越的学习能力。它们通常被用于手写和面部识别等更复杂的任务。神经网络也称为“ perceptron”。它首次出现在1940年代初期。他们最近才成为人工智能的重要组成部分。神经网络被视为可观察的数据显示设备,其中显示了数据源之间的关系。神经网络由由三个单元的神经层组成,并说明了流量,并用“输入”单元以及一层“封闭的UP”单元组成,这对应于“输出”单元[1]。数据到达数据源,并通过网络逐层通过网络传播,直到达到输出为止。本研究中使用的神经网络在以下各节中进行了详细介绍。如图1。