©2022 Wiley -VCH GMBH。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线网上在http://doi.org/10.1002/adma.202109157获得。
气体固定式摩擦式纳米生成器(GS-Tengs)为设计自动传感器设计提供了有希望的途径。然而,GS-Tengs低电输出的内在限制可能会影响传感系统的准确性和敏感性。在这里,我们通过整合具有铁电(3,3-二氟西丁基铵)2 CUCL 4 [(DF-CBA)2 CUCL 4]填充剂的胶粘剂聚(硅氧烷 - 二苯基乙二醇 - 尿氨基烷)(PSDU)弹性剂来开发多孔复合材料。psdu,一种本质上具有交替柔软的段和超分子键的底层底层负面材料,可为复合材料赋予出色的可压缩性,粘附和自我修复特性。同时,(DF-CBA)2 CUCL 4作为功能填充剂的掺入利用氢键网络的形成来增强电荷转移过程。这些填充剂通过电动波动过程有助于电荷积累,从而使功率输出的提高超过1400倍,高于基于PSDU的密集的GS-Teng。挖掘到多孔聚(硅氧烷 - 二苯基乙酰基 - 氨基甲烷) - 玻璃盐(PSDU-PK)GS-TENGS的多功能性能上,已经证明了手势/食物识别和双模式感测系统等应用,表明它们在可耐磨性的电力和智能农业中有希望的潜在潜在的潜在潜力。
可重构设备提供了按需编程电子电路的能力。在这项工作中,我们展示了在后制造的钙钛矿 NdNiO 3 设备中按需创建人工神经元、突触和记忆电容器,这些设备可以通过单次电脉冲简单地重新配置为特定用途。钙钛矿镍酸盐的电子特性对氢离子局部分布的敏感性促成了这些结果。利用来自我们的记忆电容器的实验数据,储层计算框架的模拟结果显示出在数字识别和心电图心跳活动分类等任务中的出色性能。使用我们的可重构人工神经元和突触,模拟动态网络在增量学习场景中的表现优于静态网络。按需设计大脑启发计算机构建块的能力为自适应网络开辟了新的方向。C
空间应用是自1958年首次应用硅太阳能电池作为卫星电源以来的光伏(PV)的主要驱动力。[1]此外,依赖于带有交错带盖的子灯的互补吸收的现代多期技术的开发主要是由空间应用驱动的。当今的最先进的市售空间PV为III – V/GE半导体基于三重(3J)连接空间太阳能电池,可达到30%的效率。[2–4]这些高性能细胞需要单晶,低缺陷的外延生长方法,这些方法本质上是昂贵的。可获得的III – V,包括INGAP/GAAS/GE吸收剂在GE底物上生长。他们是
和非结构化数据。[1,2] 在大脑中,信息储存在突触中,突触中有一个裂缝连接两个神经细胞(神经元)。 当输入刺激到达前神经元时,神经递质会从前神经元分泌出来,与后神经元上的受体结合,并调节离子传输通道(图 1a)。[3] 离子通过通道的动态通过激活/停用离子通透性通道的形成(即电导更新)在增强/减弱突触权重方面起着至关重要的作用。[3] 根据突触前刺激,突触权重会暂时维持或持续数分钟、数小时甚至更长时间,并可充当记忆状态。 开发一种通过类似离子的动力学更新电导的人工突触将非常接近地模拟生物突触的行为,并最终可以模拟各种生物神经操作。漂移忆阻器已经成功模拟了具有长期增强 (LTP) 和长期抑制 (LTD) 特性的电导更新,但本质上是随机的 [4] 并且需要额外的扩散元件来模拟离子动力学。[5] 3 端器件结构(例如晶体管)可以调节离子,因此是人工突触的有希望的候选者。[6–13] 电解质门控晶体管无需额外电路即可控制离子。[6,7] 然而,实现电解质门控晶体管的长期可塑性一直具有挑战性,主要是因为器件不稳定性(例如,接触处的寄生电化学反应引起)。[6–8] 铁电场效应晶体管 (FeFET) 提供了一种出色的器件架构,通过控制铁电栅极的极化来编程/擦除非易失性多电导状态,从而控制突触权重。 [9] 铁电栅极已用于调节 FeFET 的电导率,FeFET 采用各种半导体作为沟道材料,包括氧化铟镓锌 (IGZO) [9–11] 、二维材料 [12,13] 和聚合物。[42] 然而,用缺乏离子的半导体材料模拟离子动力学几乎是不可能实现的。因此,需要一种能够传导离子并保持其电子结构的沟道材料。金属卤化物钙钛矿半导体因其独特的离子-电子混合导电特性,是用于人工突触的有前途的材料。[14–16] 高迁移率、大扩散长度和长载流子寿命等显著的电子导电特性使得
d 中山大学化学学院生物无机与合成化学教育部重点实验室,广州 510275 基于钙钛矿纳米晶体的发光二极管 (PNCs-LED) 引起了下一代显示和照明技术的极大兴趣,因为它们的色纯度、高亮度和发光效率接近从器件结构中提取电致发光的固有极限。虽然现在是开发有效的光耦合策略以进一步提高器件性能的时候了,但 PNC-LED 的这一技术相关方面仍然没有明确的解决方案。在这里,遵循理论指导并且没有集成复杂的光子结构,我们实现了稳定的 PNC-LED,其 EQE 高达 29.2%(平均 EQE =24.7%),这大大突破了普通 PNC-LED 的耦合限制,并系统地超越了以前任何基于钙钛矿的器件。这种前所未有的性能的关键是引导薄至 10 nm 的 PNC 发射层中的复合区,我们通过使用用镍氧化物层重新表面化的 CsPbBr 3 PNC 精细平衡电子和空穴传输来实现这一点。超薄方法具有普遍性,原则上也适用于其他钙钛矿纳米结构,用于制造高效、颜色可调的透明 LED,非常适合不显眼的屏幕和显示器,并与光子元件的集成兼容,以进一步提高性能。关键词:卤化铅钙钛矿纳米晶体、发光二极管、外部量子效率、光耦合、透明 LED 近几年来,铅因其优越的光学性能和经济实惠的溶液加工性而备受推崇
免责声明:洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占、免版税的许可,可以出于美国政府目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
图 S4 . MAPbI 3 和处理过的 MAPbI 3 的 X 射线图。a) 10-35 o 范围内的 X 射线光谱仪。b) 和 c) 分别报告了 14.1 o 处 (110) 峰的缩放图和 MAPbI 3 和处理过的 MAPbI 3 的高斯拟合曲线。根据谢乐方程:d=(0.89*λ)/(FWHM*cosθ),其中 λ 是 X 射线的波长,FWHM 是衍射峰的半峰全高,θ 是衍射角。通过高斯拟合评估的14.1 o 处的峰(110)的半峰全宽分别为后处理前后的钙钛矿的0.170±0.002和0.165±0.001,从而计算出的晶体尺寸分别为82.1±0.2nm和86.1±0.1nm。
摘要:以磺基甜菜碱或磷酰胆碱两性离子为侧链基团的功能性聚合物被证实既是 CsPbBr 3 钙钛矿纳米粒子 (PNP) 的配体,又是其基质。这些聚合物可制备出具有出色 NP 分散性、光学透明度和出色的抗 NP 降解性(暴露于水中时)的纳米复合膜。含两性离子的共聚物与 PNP 的多齿相互作用可诱导分散或弱聚集的纳米复合形态,具体取决于聚合物中两性离子官能团的程度。将其他官能团(例如二苯甲酮侧链基团)加入聚合物中可产生可光刻图案化的薄膜,而时间分辨光致发光测量可深入了解 PNP 在两性离子聚合物基质中的电子影响。