摘要:灯笼是由于它们在可见光和近红外范围内狭窄的光学发射光谱而导致光电特性的多功能调节剂。它们在金属卤化物钙钛矿(MHP)中的使用最近已获得突出,尽管它们在这些材料中的命运尚未在原子水平上建立。我们使用Cesium-133固态NMR来建立所有非放射活性灯笼离子的物种(La 3+,Ce 3+,Pr 3+,Nd 3+,SM 3+,SM 3+,SM 3+,SM 2+,EU 3+,EU 3+,EU 2+,GD 3+,GD 3+,GD 3+,GD 3+,TB 3+,TB 3+,HO 3+,HO 3+,HO 3+,HO 3+,HO 3+,MIR 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ lu 3+ lu 3+ lu 3+ lu 3+ lu 3+ CSPBCL 3。我们的结果表明,无论其氧化状态如何(+2,+3),所有灯笼均掺入CSPBCL 3的钙钛矿结构中。■引言铅卤化物钙钛矿已引起了光电应用的半导体材料的极大关注。1
累积部署的薄效率 - 光电脉冲和薄的光伏制造能力的行业领导者都通过蒸气加工产生其镉的太阳能电池。4 - 6此外,可以使用蒸气处理通过Heliatek GmbH对有机光伏的溶液或蒸气方法进行制造。7与这些技术类似,基于蒸气的加工有望在基于钙钛矿的光伏的商业化中发挥关键作用。8它们不仅可以启用具有高产量和可重复性的高质量工艺,而且还可以消除危险溶剂,并简化对较大设备区域的升级。9此外,通过蒸气加工均匀地涂层在粗糙表面上涂层的能力是有益的,在串联应用中,在部署基于perovskite的材料时,这一点尤其重要。10 - 12虽然只有一小部分的研究专注于卤化物钙钛矿材料的蒸气加工,但其进度绝不比基于溶液的方法不如基于溶液的方法,尤其是在研究最多的混合有机有机物 - 无机卤化盐酸钙钛矿材料时。13 - 15个使用蒸气加工有机 - 无机卤化物钙钛矿吸收剂的太阳能电池的降低功率转化率(PCE)为24.4%,16个与基于溶液的方法相当。17
在这项工作中,Taguchi方法方法用于优化氧化石墨烯(GO)作为倒置的钙钛矿太阳能电池(IPSC)中的孔传输层(HTL)。通过使用此方法,优化了来自数值建模太阳能电池电容模拟器 - 尺寸(SCAPS-1D)的数据。尽管它具有不同的参数结果和不同的原因,但完成分析过程也需要很长时间。据报道,Taguchi方法能够找到最重要的因素并减少更少的时间的参数变化。Taguchi算法在本实验中使用,因为它基于正交阵列(OA)实验,该实验为具有最佳控制参数值的实验提供了较小的方差。SCAPS-1D软件用于使用HTL模拟IPSC。 然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。 最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。SCAPS-1D软件用于使用HTL模拟IPSC。然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。
在高压和高温条件下,一种新的钙钛矿Koso 3已稳定。在500 K(pm -3 m)处是立方体,随后在320 K(P 4/ mmm)和菱形方德(r -3 m)下经历了随后的相过渡到230 K,如提炼同步X射线粉末粉末衍射(SXRD)数据所示。较大的轨道重叠积分和钙钛矿Koso 3中5D电子的扩展波函数允许探索Mott和Hund的规则耦合占主导地位到多个相互作用的状态的体制中的物理。我们通过一系列测量值,包括磁性和传输性能,差异扫描量热法和特定热量,证明了由中子粉末衍射以及物理性质发现的异国情调磁有序阶段以及物理性能,从本地化到巡回电子行为,可以为系统提供全面的信息。
这项工作引入了简化的沉积程序,用于多维(2D/3D)钙钛矿薄膜,在形成3D perovskite时,将氯化苯乙林(PEACL)处理整合到反提供的步骤中。这种同时沉积和钝化策略减少了合成步骤的数量,同时稳定卤化物钙钛矿纤维,并将所得太阳能电池设备的光伏性能提高到20.8%。使用多模式原位和其他原位特征的组合,证明PEACL在钙钛矿纤维纤维形成过程中的引入减慢了晶体生长过程,从而导致晶粒尺寸较大,从而导致较大的晶粒尺寸和较窄的晶粒尺寸,从而减少晶粒边界处的载载流量,并提高设备的性能和设备的性能和稳定性。数据表明,在退火过程中,PEACL差用于膜的表面,形成疏水(Quasi)2D结构,可保护大部分钙钛矿纤维中的perove胶剂免受湿度诱导的降解。
摘要:光伏细胞的演变与制造材料的进步本质上有关。本综述论文对基于硅,有机和钙钛矿太阳能电池的最新发展进行了深入的分析,这些发展是光伏研究的最前沿。我们仔细检查了每个材料类别的独特特征,优势和局限性,强调了它们对效率,稳定性和商业生存能力的贡献。基于硅细胞的持久相关性和晶体结构的最新创新。 有机光伏细胞的柔韧性和低成本产生的潜力进行了检查,而Perovskites的效率显着增长和易于制造。 本文还解决了物质稳定性,可扩展性和环境影响的挑战,从而对这些物质技术的当前状态和未来潜力提供了平衡的观点。基于硅细胞的持久相关性和晶体结构的最新创新。有机光伏细胞的柔韧性和低成本产生的潜力进行了检查,而Perovskites的效率显着增长和易于制造。本文还解决了物质稳定性,可扩展性和环境影响的挑战,从而对这些物质技术的当前状态和未来潜力提供了平衡的观点。
光伏技术的进步肯定是由铅基钙钛矿太阳能电池(PSC)改造的。但铅毒性是其大规模商业生产和使用的巨大障碍。因此,在目前的工作中,已经对三种无铅钙钛矿材料Masni 3,Masnbr 3和Magei 3进行了彻底研究,以开发高效率和稳定性的环境友好PSC。建模的设备结构用ZnO用作电子传输层(ETL),CH 3 NH 3 SNI 3,CH 3 NH 3 NH 3 SNBR 3和CH 3 NH 3 GEI 3作为钙钛矿的吸收层(PAL),螺旋形成孔作为孔传输层(HTL),Indium掺杂锡氧化物(HTL),Indium oped Tin oxide(Ito)(ITO)(ITO)和顶部的Electode and Anode Anode Anode Anode Anode Anode Anode Anode。缺陷密度与钙钛矿吸收层的不同厚度相结合,以获得最佳的太阳能电池参数。At a thickness of 500 nm and defect density of 1 × 10 14 cm −3 of PAL, simulated Perovskite solar cell ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro- OMeTAD/Au provided optimized solar cell parameters as PCE 25.95%, Voc 1.06V, Jsc 31.67mA/cm 2 and FF 77.24%, ITO/ ZnO/CH 3 NH 3 SnBr 3 /Spiro-OMeTAD/Au provided PCE 25.01%, V OC 1.02V, J SC 32.41 mA/cm 2 and FF 75.68%, ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro-OMeTAD/Au provided PCE 19.66%, V OC 1.81V, J SC 14.29 mA/cm 2 and FF 75.95%.此外,对太阳能电池特征研究了界面缺陷密度,串联电阻,分流电阻和温度的影响。可以很好地观察到,基于SN的设备比基于GE的设备更有效,更稳定,反之亦然。
摘要:由于效率的快速提高,卤化物钙钛矿材料在光伏区域引起了全世界的关注,从2009年的不到4%到2023年的26.1%,只有纳米杠杆光活性层。同时,这位Nova星在许多其他领域(例如发光,传感器等)都发现了应用。本综述始于物理和化学的基础知识,其卤化物钙钛矿材料的出色性能用于光伏/发光以及准备它们的方法。然后,它描述了太阳能电池和发光设备的基本原理。总结了包括纳米技术在内的策略,以证明这两个领域的卤化物钙钛矿材料的性能和应用:从结构与范围关系到设备中的每个组件如何影响整体性能。此外,这篇评论列出了卤化物钙钛矿材料未来应用的挑战。
摘要:由于效率的快速提高,卤化物钙钛矿材料在光伏区域引起了全球关注,从2009年的不到4%到2023年的26.1%,只有纳米杠杆光活性层。同时,这位Nova星在许多其他领域(例如发光,传感器等)都发现了应用。本综述始于物理和化学的基础知识,其卤化物钙钛矿材料的出色性能用于光伏/发光以及准备它们的方法。然后,它描述了太阳能电池和发光设备的基本原理。总结了包括纳米技术的策略,以改善这两个领域的卤化物钙钛矿材料的性能和应用:从结构 - 财产关系到设备中的每个组件如何影响整体性能。此外,这篇评论列出了卤化物钙钛矿材料未来应用的挑战。
摘要:在光激发钙钛矿材料中解开电子和热效应对于光伏和光电子应用至关重要,但由于其在时间和能量域中的相互交织的性质,因此仍然是一个挑战。在这项研究中,我们采用了温度依赖性的可变角度椭圆法,密度功能理论计算和宽带瞬态吸收光谱范围跨越可见至中深到深度 - 粉状物(UV)的Mapbbr 3薄膜的范围。使用深紫外线检测可以打开一个新的光谱窗口,该窗口可以探索布里鲁因区域内各种对称点的高能激发,从而促进了对紫外线频带的超快响应以及控制它们的基本机制的理解。我们的研究表明,光诱导的光谱特征非常类似于纯晶格加热产生的光谱特征,并且我们使用与衰减相关光谱和温度诱导的差异吸收的组合,在不同的延迟时间内脱离了相对的热和电子贡献及其在不同延迟时间的发展。结果表明,光诱导的瞬态具有显着的热起源,不能仅归因于电子效应。在光激发之后,随着载体(电子和孔)将其能量传递到晶格,热贡献从1 ps时的约15%增加到500 ps时的〜55%,随后降低到1 ns时的〜35 - 50%。这些发现阐明了荷载载体材料中的电荷载体和晶格之间的复杂能量交换,并提供了对光生荷载体的利用率有限的见解。