只有通过实验来测试形式或计算模型,才能获得机械洞察力。此外,与病变研究类似,幻觉感知可以作为理解健康听觉感知的基本处理原理的载体。我们特别关注耳鸣——作为听觉幻觉感知的主要例子——回顾了人工智能、心理学和神经科学交叉领域的最新研究。特别是,我们讨论了为什么每个耳鸣患者都会遭受(至少是隐藏的)听力损失,但并不是每个听力损失患者都会遭受耳鸣。我们认为,内在神经噪声是沿着听觉通路产生和放大的,是一种基于自适应随机共振恢复正常听力的补偿机制。神经噪声的增加可能会被误认为是听觉输入并被感知为耳鸣。这种机制可以在贝叶斯大脑框架中形式化,其中感知(后验)吸收了先前的预测(大脑的期望)和可能性(自下而上的神经信号)。可能性的较高均值和较低方差(即增强的精度)会改变后验概率,表明对感官证据的误解,而大脑中支持先前预测的可塑性变化可能会进一步混淆这种误解。因此,两个基本处理原理为听觉幻觉的出现提供了最有力的解释力:预测编码是一种自上而下的机制,而自适应随机共振是一种互补的自下而上的机制。我们得出结论,这两个原理在健康的听觉感知中也发挥着至关重要的作用。最后,在神经科学启发的人工智能背景下,这两个处理原理都可能有助于改进当代的机器学习技术。
人脑由 100 × 10 9 个神经元组成,它们相互连接,充当人体的控制系统。对人脑的研究从公元前一世纪就一直在进行。1最近,这引发了脑机接口 (BCI) 的研究。2 BCI 设计需要分析从头皮记录下来的脑电活动作为脑电图 (EEG) 活动。EEG 信号根据 EEG 电极位置和人体动作而变化。BCI 使用这些变化作为控制设备的特征或命令。传统医疗级 EEG 系统如 NeuroScan TM 、BioSemi TM 和 g.Tec TM 可在医院和医疗诊所找到,用于诊断一系列疾病,如癫痫、睡眠障碍和其他脑相关疾病。3,4 这些 EEG 系统由于其高质量和可靠性已经使用了很多年。最近,一些廉价的消费级无线脑电图系统已在家庭中使用,用于冥想和简单的脑电图诊断(NeuroSky TM 、Emobio TM 、Muse TM 、Emotiv TM 等)。与传统脑电图系统相比,这些无线脑电图系统不仅更便宜,而且更简单、更快捷
摘要 目的. 将穿透性神经探针插入大脑对于神经科学的发展至关重要,但它涉及各种固有风险。原型探针通常插入水凝胶基大脑模型中,并分析其机械响应以了解体内植入期间的插入力学。然而,人们对神经探针在水凝胶大脑模型中插入动力学的潜在机制,特别是开裂现象,仍了解不足。这种知识差距导致在将模型研究获得的结果与在体内条件下观察到的结果进行比较时出现误解和差异。本研究旨在阐明探针的锐度和尺寸对探针插入水凝胶模型时出现的开裂机制和插入动力学的影响。方法. 系统地研究了由尖端角度、宽度和厚度定义的不同柄形状的假探针的插入。透明水凝胶中插入引起的裂纹用不混溶染料加重,通过原位成像跟踪,并记录相应的插入力。开发了三维有限元分析模型来获得探针尖端和幻像之间的接触应力。主要结果。研究结果揭示了一种双重模式:对于尖锐、细长的探针,由于与插入方向一致的直裂纹不断扩展,插入力在插入过程中始终保持在较低水平。相反,钝的、厚的探针会产生很大的力,并且随着插入深度的增加而迅速增加,这主要是由于形成了具有锥形裂纹表面的分支裂纹,以及随后的内部压缩。这种解释挑战了传统的理解,即忽视了开裂模式的差异,并将增加的摩擦力视为导致更高插入力的唯一因素。通过实验确定了区分直裂纹和分支裂纹的关键探针锐度因素,并从三维有限元分析中得出了两种开裂模式之间转变的初步解释。意义。本研究首次提出了神经探针插入水凝胶脑模型时两种不同开裂模式的机制。建立了开裂模式与插入力动力学之间的相关性以及探针锐度的影响,通过模型研究为神经探针的设计提供了见解,并为未来研究探针植入过程中脑组织开裂现象提供了参考。
固态光源比常规源更容易容易出现更大的时间光调制(TLM)。tlm的可见性取决于波形,频率,调制深度和占空比,并且受观察者的敏感性的影响。tlm可以远远超过临界闪烁融合频率(CFF)。这个人类受试者实验探索了在74 TLM波形下的靶向任务的频道阵列效应与幻影阵列效应的可见性。结果显示,频镜的可见性峰在90至120 Hz之间,而幻影阵列可见性峰在500至1,000 Hz之间。在6,000 Hz的敏感参与者中可以看到幻影阵列。在矩形和正弦TLM,较高的调制以及占空比的周期为10%或30%和50%时,这两种效应更为可见。使用Leiden视觉灵敏度量表进行区分的高灵敏参与者将TLM波形评为更明显,尤其是那些本质上难以看见的tlm波形。这项工作奠定了幻影阵列效应指标的基础,并指导驱动器和调光设计师迈向电子电路,以最大程度地减少LED产品中TLM的可见性。
本文提出一种用于模拟脑内代谢活动的动态光学模体,建立了控制电压与物质浓度的线性等效模型。以环氧树脂为基质材料,纳米碳粉和二氧化钛粉末分别作为吸收和散射掺杂剂,在基础模体表面采用液晶薄膜作为压控光强调节器,实现固-固动态光学模体。该动态模体可模拟近红外光谱(NIRS)信号,采样率高达10 Hz,对1 μ mol/l范围内的氧合血红蛋白和脱氧血红蛋白浓度最大模拟误差分别为7.0%和17.9%。与同类固体仿生模体相比,可调节的模拟物质浓度范围扩大了一个数量级,满足了大多数脑部NIRS信号的模拟要求。
目前,幻影现象分为幻影感觉(截肢肢体的无疼痛反应)和幻影疼痛(截肢肢体或身体另一个截肢部分的疼痛)[13,14]。Hunter等。 [15,16]介绍了幻影意识的术语,描述了身体失落部分的存在(“对失踪肢体的一般意识”),而不是所指的感知反应。 幻影疼痛也被定义为缺失四肢[17]或具有特定形式,重量或运动范围的脱落身体部位的常见感觉[17] [14,18]。 根据Hunter等人的说法。 [16],对幻影疼痛的意识是必要的,而不是相反。 在我们的论文概念中,我们决定排除树桩疼痛的现象(即 截肢肢体的其余部分是从讨论中开始的,因为在我们看来,并且根据术后伤口愈合,这种感觉相对较快。 幻影肢体疼痛在神经性疼痛[19-21]中占据了一个显着的位置,反过来,这是疼痛的一般疼痛差异中的慢性痛苦和功能障碍的疼痛。 慢性神经性疼痛的原因是周围神经系统的损伤[24]。 遗传倾向[24]和心理因素的影响[1,25,26]也被强调。 幻影现象存在于大约80%的截肢物中[20,27 - 31]。Hunter等。[15,16]介绍了幻影意识的术语,描述了身体失落部分的存在(“对失踪肢体的一般意识”),而不是所指的感知反应。幻影疼痛也被定义为缺失四肢[17]或具有特定形式,重量或运动范围的脱落身体部位的常见感觉[17] [14,18]。根据Hunter等人的说法。 [16],对幻影疼痛的意识是必要的,而不是相反。 在我们的论文概念中,我们决定排除树桩疼痛的现象(即 截肢肢体的其余部分是从讨论中开始的,因为在我们看来,并且根据术后伤口愈合,这种感觉相对较快。 幻影肢体疼痛在神经性疼痛[19-21]中占据了一个显着的位置,反过来,这是疼痛的一般疼痛差异中的慢性痛苦和功能障碍的疼痛。 慢性神经性疼痛的原因是周围神经系统的损伤[24]。 遗传倾向[24]和心理因素的影响[1,25,26]也被强调。 幻影现象存在于大约80%的截肢物中[20,27 - 31]。根据Hunter等人的说法。[16],对幻影疼痛的意识是必要的,而不是相反。在我们的论文概念中,我们决定排除树桩疼痛的现象(即截肢肢体的其余部分是从讨论中开始的,因为在我们看来,并且根据术后伤口愈合,这种感觉相对较快。幻影肢体疼痛在神经性疼痛[19-21]中占据了一个显着的位置,反过来,这是疼痛的一般疼痛差异中的慢性痛苦和功能障碍的疼痛。慢性神经性疼痛的原因是周围神经系统的损伤[24]。遗传倾向[24]和心理因素的影响[1,25,26]也被强调。幻影现象存在于大约80%的截肢物中[20,27 - 31]。根据Merskey和Bogduk [23]和Haug [32],大约70%的截肢者将迟早或稍后会感到幻影感觉。幻影现象可能在截肢后或几个月后,甚至几年后立即发生[14,29,31,33]。
抽象背景幻影肢体疼痛(PLP)发生在截肢后,并且可以以慢性和衰弱的方式持续。重复的经颅磁刺激(RTMS)是一种无创神经调节方法,能够影响脑功能并调节皮质兴奋性。它在治疗慢性疼痛方面的有效性是有希望的。目的是评估使用RTM在PLP治疗中使用RTM的效率和安全性的证据,观察所用刺激参数,副作用和治疗的益处。方法这是对使用电子平台在国家和国际文献中发表的科学文章的系统评价。结果确定了两百篇两篇文章。删除了246个出版物,因为它们被重复或符合排除标准。在选择后,审查了六项研究,这些研究是两项随机临床试验和四个病例报告。所有评估的研究表明,RTMS的某种程度的好处可以缓解疼痛症状,甚至暂时。在治疗结束时疼痛感知较低,与会议前的那一段时间相比,在患者随访期间仍保持不变。没有使用刺激参数的标准化。没有严重不良事件的报道。尚未评估长期治疗的影响。结论即使暂时使用RTM来缓解PLP疼痛症状,也有一些好处。M1处的高频刺激表现出显着的镇痛作用。鉴于已经证明的潜力,但由于缺乏高质量研究的限制,需要进一步的对照研究来建立和标准化该方法的临床使用。
摘要:(1)背景:组织模型可以提供一种严格、可重复且方便的方法来评估光学传感器的性能。本研究描述了血管头部/脑模型的开发、特性和评估。(2)方法:该方法包括开发大脑和颅骨的模铸和 3D 打印解剖模型以及用于模拟大脑血液动力学变化的定制体外血液循环系统。将开发的模型的光学特性与文献值进行了比较。还加入了人工脑脊液来引起颅内压的变化。(3)结果:成功开发了一种新型头部模型,以模拟大脑和颅骨的解剖结构及其在近红外范围(660-900 nm)内的光学特性。所开发的循环系统模拟正常动脉血压值,平均收缩压为 118 ± 8.5 mmHg,舒张压为 70 ± 8.5 mmHg。同样,脑脊液循环允许颅内压在 5 至 30 mmHg 之间进行受控变化。成功获取了来自模型脑动脉的多波长脉动光信号(光电容积图 (PPG))。结论:这种独特的头部模型技术为研究脑脉动光信号与颅内压和脑血流动力学变化之间的关系奠定了基础。
背景和目的:心脏计算机断层扫描(CT)对假体心脏瓣膜(PHV)综合的检测和表征的贡献仍然受到限制。配备有光子计数检测器(PCD)的计算机断层扫描系统有可能克服这些局限性。因此,该研究的目的是将PHV的图像质量与PCD-CT和双能双层CT(DEDL-CT)进行比较。材料和方法:将两个金属和3个生物PHV放置在一个管子内,该管子内含有稀释的碘对比度,并在DEDL-CT和PCD-CT上以不同的角度反复扫描。两个小病变(厚度约2毫米;分别包含肌肉和脂肪)连接到4个阀的结构上,放置在胸腔幻影内,有和没有一个张力环,然后再次扫描。的采集参数是2个CT系统匹配的,并用于所有扫描。金属阀再次用适合钨k边缘成像的pa-Rameters扫描。对于所有阀门,在常规图像上测量了不同的金属零件,以评估其厚度和开花伪影。此外,还绘制了每个金属阀的6个平行剥离,并且所有密度<3倍对比介质的标准偏差的体体均被记录为条纹伪影的估计值。为主观分析,3位专家读者评估了阀门的常规图像,有和没有病变,以及钨K边缘图像。的阀门不同部分的显着性和清晰度,病变,金属和盛开的伪影的量表以4分制评分。将测量和分数与配对t检验或Wilcoxon检验进行比较。结果:客观分析表明,使用PCD-CT,瓣膜金属结构较薄,并且呈鲜花化的伪影。金属伪影也用PCD-CT(11 [四分位数(IQ)= 6] vs 40 [IQ = 13]%的体素量减少。主观分析允许注意到某些结构是可见的
摘要背景:最近,计算机断层扫描 (CT) 制造商已经开发出基于深度学习的重建算法来弥补迭代重建 (IR) 算法的局限性,例如图像平滑和空间分辨率对对比度和剂量水平的依赖性。目的:评估人工智能深度学习重建 (AI-DLR) 算法与混合 IR 算法对胸部 CT 图像质量和剂量减少的影响,对比不同临床适应症。方法:在用于胸部 CT 条件的五个剂量水平 (CTDI vol: 9.5/7.5/6/2.5/0.4 mGy) 下对 CT 美国放射学会 (ACR) 464 和 CT Torso CTU-41 体模进行采集。使用滤波反投影、两级 IR(iDose 4 级别 4 (i4) 和 7 (i7))和五级 AI-DLR(精确图像;更平滑、平滑、标准、清晰、更清晰)重建原始数据。计算了噪声功率谱 (NPS)、基于任务的传递函数和可检测性指数 (d ′):d ′ 模型检测软组织纵隔结节(纵隔内的低对比度软组织胸部结节 [LCN])、毛玻璃影 (GGO) 或高对比度肺 (HCP) 病变。两名放射科医生独立评估胸部拟人幻影图像的主观图像质量。他们使用常用的四或五分量表评估了纵隔图像的图像噪声、图像平滑度、纵隔血管与脂肪之间的对比度、实质图像的支气管与肺实质之间的视觉边界检测以及整体图像质量。结果:从标准到平滑水平,平均而言,噪声幅度降低(所有剂量水平:纵隔图像为 - 66.3% ± 0.5%,实质图像为 - 63.1% ± 0.1%),平均 NPS 空间频率降低(所有剂量水平:纵隔图像为 - 35.3% ± 2.2%,实质图像为 - 13.3% ± 2.2%),三种病变的可检测性 (d′) 增加。从标准到清晰水平则发现了相反的模式。从平滑到清晰水平,