截肢后,初级体感皮层 (S1) 中代表缺失手的区域失去了其主要输入,导致 S1 身体图的边界发生变化。这种重新映射过程被称为“重组”,并归因于多种机制,包括先前被屏蔽的输入的表达增加。在适应不良的可塑性模型中,这种重组与幻肢痛 (PLP) 有关。与幻肢运动相关的大脑活动也与 PLP 相关,这表明保留的肢体功能表征可能起到补充作用。在这里,我们根据人类神经成像,回顾了一些关于截肢后大脑 (重新) 组织的潜在驱动因素和后果的最新证据。我们强调了与截肢相关的其他感知和行为因素,例如无痛幻肢感觉、感知到的肢体所有权、完整的手补偿行为或假肢使用,这些因素也与皮质变化和 PLP 有关。我们还讨论了基于旨在改变幻肢大脑表征的干预措施的新发现,包括增强/虚拟现实应用和脑机接口。这些研究指出,感觉变化与涉及身体表征、疼痛处理和运动控制的大脑区域的变化密切相关。最后,我们回顾了基于方法学进展的最新证据,例如高场神经成像和多变量技术,这些技术为探究缺失手部皮质区域中的体感表征提供了新的机会。总的来说,这项研究强调了需要考虑除 S1 重新映射之外的其他大脑机制的潜在贡献,以及情境因素与大脑变化的动态相互作用,以理解和缓解 PLP。
前言 首先,我必须声明,我非常感激和荣幸能从我亲爱的导师 Elbrus CAFEROV 教授那里获得毕业设计,他照亮了我的道路,并以他的信任和帮助引导我。 我还要感谢我的父母 Selim KAYAR 和 Sevinç KAYAR,他们在我的求学生涯中一直以极大的爱和牺牲支持着我。 2021 年 6 月 Yusuf Kadri KAYAR
前言 首先,我必须声明,我非常感激和荣幸能从我亲爱的导师 Elbrus CAFEROV 教授那里获得毕业设计,他启发了我的道路,并以他的信任和帮助引导我。我还要感谢我的父母 Selim KAYAR 和 Sevinç KAYAR,他们在我的整个教育生涯中一直以极大的爱和牺牲支持我。2021 年 6 月 Yusuf Kadri KAYAR
YRF-4C 12200 经过进一步修改,成为 F-4E 项目的空气动力学原型机,1967 年 4 月 20 日,官方名称从 YRF-4C 更改为 YF-4E。从 1968 年开始,YF-4E 测试了由铍制成的方向舵,而不是标准铝制方向舵。空军飞行动力学实验室 (AFFDL) 的工程师建议使用铍来减轻重量,因为铍制方向舵比铝制方向舵轻 34.6%。YF-4E 62-12200 于 1968 年 5 月 14 日使用新方向舵进行了首次飞行,并在接下来的 39 个月内进行了 158 次试飞。在测试新方向舵时,空军对飞机进行了改装,以测试“敏捷鹰 IV”计划下的固定前缘机动缝翼,并在安装到 F-4E 机队之前测试了开槽水平尾翼。测试计划结束时,固定翼前缘缝翼被拆除。
Foods,M.,Della,G.,Tartar,I.,Gandini,G.,G.G.,Salvo,A.,Rosati,M。(2022)。在Caso中接近生日宽广的野心。期刊行为,50,23-29 [10,1016/j.jveb.2022.01,002]。
为了对耳鸣如何在大脑中出现,我们必须构建模仿耳鸣发育和感知的双重合理计算模型,并通过大脑和行为实验测试暂定模型。特别关注耳鸣,我们回顾了人工智能,心理学和神经科学交集的最新工作,表明新的研究议程遵循这样的想法,即实验只能在测试脑部计算模型时才产生理论洞察力。这种观点挑战了普遍的看法,即耳鸣研究主要是数据有限的,并且通过先进的数据分析算法进行分析的大型,多模式和复杂的数据集将最终导致人们对丁香核的形成方式的基本见解。但是,有证据表明,尽管现代技术允许在动物和人类中以前所未有的丰富方式评估神经活动,但经验检验了一个关于耳鸣的口头定义的假设,但永远不会导致机械理解。取而代之的是,假设检验需要与产生可验证预测的综合模型的构建相辅相成。我们认为,即使当代人工智能和机器学习方法在很大程度上缺乏生物学上的合理性,但要构建的模型也必须借鉴这些领域的概念,因为它们已经证明它们在建模脑功能方面做得很好。尽管如此,必须连续增加生物学功能,从而导致更好和细粒度的模型,最终允许在应用动物或患者研究中使用动物或患者研究之前,甚至可以测试硅中可能的治疗策略。
摘要:目的。控制假肢的主要挑战是设备与使用者幻肢之间的通信。我们展示了通过有针对性的经皮神经电刺激 (tTENS) 增强截肢者幻肢感知和改善运动解码的能力。方法。对四名截肢参与者进行了经皮神经刺激实验,以绘制幻肢感知。我们在截肢者接受感官刺激之前和之后测量了幻肢运动过程中的肌电信号。使用脑电图 (EEG) 监测,我们测量了幻肢运动和刺激过程中感觉运动区域的神经活动。对于一名参与者,我们还跟踪了 2 年内的感官映射和 1 年内的运动解码表现。主要结果。结果显示,由于感官刺激,截肢者感知和移动幻肢手的能力有所提高,从而改善了运动解码。在对一名截肢者进行的扩展研究中,我们发现感觉映射在 2 年内保持稳定。值得注意的是,感觉刺激可改善 28 天内的运动解码,而表现在 1 年内保持稳定。从脑电图中,我们观察到感觉运动整合的皮质相关性和由于幻肢感知增强而增加的运动相关神经活动。31 意义。这项研究表明,幻肢感知会影响假肢控制,并且可以从有针对性的神经刺激中受益。这些发现对于改善假肢的可用性和功能具有重要意义,因为幻肢的感觉增强了。34
磁共振成像 (MRI) 已成为脑部活体检查的主要成像技术。除了解剖和功能 MRI 之外,扩散 MRI (dMRI) 还广泛用于临床和研究,以评估组织结构和纤维方向,尤其是在神经系统中。虽然扩散张量成像是评估方向测量的最广泛方法,但也提出了其他更复杂的模型。然而,dMRI 的验证是一项具有挑战性的工作,需要专门的测试样本。本文显示,双光子聚合 (2PP) 3D 打印允许制造此类测试对象,也称为幻影。在升级 2PP 制造工艺后,可以创建具有高空间分辨率和足够尺寸的 3D 结构,以便在人体 7T MRI 扫描仪中成像。这些幻影可靠地模拟了人类白质,从而能够系统地验证和确认 dMRI 数据及其分析。 3D 打印结构包含多达 51,000 个微通道,可模拟较大轴突的扩散行为,每个微通道的横截面积为 12 × 12 μ m 2,平行和交叉排列。获取的 dMRI 数据显示并验证了这些新型脑模型的实用性。
摘要:脉搏血氧饱和度代表现代医学中光学的无处不在的临床应用。最近的研究引起了人们对混杂因素的潜在影响的担忧,例如可变的皮肤色素沉着和灌注对脉搏血氧仪中血氧饱和度测量精度的影响。模拟幻影测试提供了低成本,控制良好的解决方案,用于表征设备性能并研究潜在的误差源,从而可以减少对体内昂贵的体内试验的需求。这项研究的目的是开发基于幻影的脉搏血氧仪的测试方法。材料光学和机械性能审查,选择和调整以达到最佳的生物学相关性,例如,含氧组织的吸收和散射,强度,强度,弹性,硬度以及代表人手指的几何形状和组成的其他参数,例如血管大小和分布和分布和灌注。相关的解剖学和生理特性总结并实施,以创建初步的手指幻影。为了创建初步的手指幻影,我们合成了一个具有散射器的高符合硅胶基质,用于嵌入柔性管,并研究了这些散射物在新颖的3D打印树脂中以进行光学性能控制,而无需改变机械稳定性,而不改变具有与生物学特征的幻象的产生。幻影实用程序。3D印刷幻象在生物学上相关的条件更加相关。这些初步结果表明,幻影具有强大的潜力,可以发展为评估脉搏血氧仪性能的工具。差距,建议和策略是为了持续的幻影开发而提出的。
1美国,德克萨斯州农工大学生物医学工程系,美国德克萨斯州大学站77843,美国2 Savoie Mont-Blanc University,Polytech Annecy-Chamb´ery,Le Bourget du Lac,法国3实验室TIMC-CNRS,UMR 5525,UMR 5525俄亥俄州辛辛那提市,美国45229,美国5休斯顿卫理公会Debakey心脏和血管中心,德克萨斯州休斯敦,77030,美国6,美国6辛辛那提大学心血管健康与疾病部,辛辛那提大学医学院,辛辛那提大学,辛辛那提大学,俄亥俄州俄亥俄州俄亥俄州45267休斯敦卫理公会学术研究所,美国德克萨斯州休斯顿市卫理公会学术研究所,美国9 J. Mike Walker '66机械工程系,德克萨斯州A&M大学,美国学院站,美国德克萨斯州77843,美国