疼痛推动了自我保护行为,进化论的理论表明它在不同的时间表上起作用以发挥不同的功能。阶段性疼痛提供了一种教学信号,以避免避免新损伤,但主张滋补疼痛来支持恢复性的行为,例如通过减少动机活力。我们在沉浸式的虚拟现实脑电图觅食任务中检验了这一假设,其中受试者在森林中收获了果实:一些水果引起了握手的短暂性疼痛,而这种选择降低了选择的概率。同时,对侧上臂的滋补压力疼痛与动作速度降低有关。这可以通过自由手术框架来解释,该计算框架在动机的活力和决策价值方面对滋补和阶段性疼痛的功能进行形式化和量化,以及与脑电图响应相关的模型参数。总体而言,结果表明,补体和阶段性疼痛如何效果在持续的自适应行为期间支持最小化的不同客观动机功能。
研究人员没有定义他们检查的自我触摸的种类,实际上是指不同类型的自我触摸(Reinecke等,2020)。这导致了这样一个事实,即自我打击及其神经心理学的相关性仍然知之甚少。因此,在运动学上定义了不同类型的自我触摸类型,例如阶段(离散),重复性和不规则,并探索不同类型的神经相关性,将为自我调控行为的神经心理学功能提供洞察力。自我打击定义为身体两个部分之间的动态物理接触,通常是作用在身体部分的手(Lausberg,2022)。自我打击从刮擦,摩擦和揉捏变成抚摸。基于运动轨迹,可以在日常生活中观察到三种类型的自我触摸,因此如下所示:阶段性自动触摸的特征是相结构。它们包含一个传输阶段,其中手被运输到接触位置,一个概念阶段,带有单向运动路径,其中手在身体上作用于人体,直接后面是一个缩回阶段,其中手被向后移动,例如单笔冲程。重复的自我打击,例如阶段性触摸,由传输阶段,概念阶段和回缩阶段组成。然而,在概念阶段,相同的运动路径被重复使用而没有休息,例如刮擦。仅当运动沿相同方向进行多次移动时,缩回阶段才会随之而来。相比之下,不规则的自我打击没有相结构。它们的特征是各个方向上的短运动路径,实际上没有手的位移。由于它们没有概念阶段,因此它们并非基于任何运动计划(Lausberg,2019年)。重复与阶段性触摸代表两个不同的现象学实体。不是很重要的触摸数量,而是接触的质量(Spencer等,2003; Schaal等,2004; Van Mourik和Beek,2004; Huys等,2008; Lausberg,Lausberg,2013)。不同的自我打击类型发生在日常生活中不同的情况下(Heubach,2016; Mueller等,2019; Neumann et al。,2022)。重复的自我打击与更好的心理健康相关,与不规则的自我打击相反(Reinecke等,2020)。不规则的自我打击可能通过强烈的体感刺激来避免其他负面刺激。此外,发现相反的效果对于阶段与不规则的自我触摸(Lausberg,2022)。阶段性自动触摸也与急性压力期间的调节过程有关,从而增强了认知过程(Freedman和Bucci,1981; Grunwald等,2014; Heubach,2016)。阶段性自我打击的时间比例越高,主观压力体验越低(Heubach,2016年)。所有三种类型的触摸都应从情感,认知和身体功能方面进行区分。在这种情况下,触摸的数量不是重要的,而是联系的质量(Lausberg,2013年)。据我们所知,在三种特定类型的自我触摸中,从未尝试过任何尝试调查大脑激活的尝试。重复,不规则和阶段性自动的差异效果解释了当前研究人员辩论的争议,并表明了对自我打击的精细分析的重要性。先前的研究调查了自动触摸,而没有运动学定义并区分不同类型的自我接触。自我打击被描述为更“重复的”或更“类似的”,但没有使用特定的运动标准
背景:时间干扰刺激(TIS)是一种神经调节技术,可以通过基于从大脑外部的MUL Tiple电极对的高频电刺激诱导干扰电信号来刺激大脑区域。尽管进行了许多研究,但是对TIS的神经化学作用的研究有限。目的:我们进行了两个实验,以研究TI对内侧前脑束(MFB)的影响 - 诱发的质量多巴胺(DA)反应。方法:在第一个实验中,我们将TIS应用于碳纤维微电极(CFM),以检查纹状体(STR)中MFB诱发的Phasic DA响应的调节。peat频率和强度为0、2、6、10、20、60、130 Hz和0、100、100、200、300、400、500μA。在第二个实验中,当在皮质上方应用(具有针对纹状体的基于模拟的刺激位点)时,我们检查了2 Hz Beat频率(基于第一个实验)对MFB诱发的Phasic DA释放的效果。我们使用0 Hz和2 Hz击败频率,并且没有刺激的控制条件。结果:在第一个实验中,TIS的BEAT频率为2 Hz,强度为400μA或更高的MFB诱发的Phasic DA释放,大约40%,直到实验的结尾一直持续。相反,在2 Hz以外的频率下,小于400μA的强度不影响MFB诱发的Phasic DA释放。在第二个实验中,用2 Hz beat频率的TI仅降低了MFB诱发的PHASIC DA响应,但DA释放的降低尚未持续。结论:在str中诱发的phasic phasic da释放。这些发现表明TI可以影响大脑的神经化学调节。
5 Perris C.对双极性(躁狂抑郁)和单极复发性抑郁症的研究。Acta Psychiatr Scand。1966; 196(增刊):118–152 6 Perris C.抑郁症的中央度量。in:van Praag HM,Lader MH,Rafaelsen OJ,Sachar EJ(编辑)。生物精神病学手册,第二部分,纽约,Dekker,1980年。7 Perris C.关于环形精神病的研究。Acta Psychiat Scand。1974; 253(增刊):1-77 8在他的教科书中,内源性精神病的分类,莱昂哈德(Leonhard,1957)描述了环形精神病,并将它们分为三种不同形式的精神病:运动性精神,混淆精神病和焦虑症和焦虑幸福(兴高采烈)精神病。他将环形和精神分裂症的精神病分离出来,并将其定义为一组恢复双相情感障碍,这些疾病类似于他们的课程中的阶段性精神疾病,以及在其内容中的非系统性精神分裂症(BAN THOMAS,心理学家,心理药理学和功能性心理学的分类)。
抽象的进化压力适应了昆虫化学效应,以适应其各自的生理需求和生态壁ni的任务。孤独的夜间飞蛾依靠他们的急性嗅觉在晚上找到伴侣。通过大多数未知的机制,以最大的灵敏度和高时间分辨率检测到信息素。虽然昆虫嗅觉受体的逆拓扑和与嗅觉受体共感染者的异构化表明通过气味门控受体 - 离子通道复合物的离子型转导,但矛盾的数据提出了扩增的G-protein-G-protein - 耦合的转导。在这里,我们在特定时间中使用了男性甘达·塞克斯塔·霍克莫斯(Manduca Sexta Hawkmoths)的信息素敏感性的体内尖端录制(REST与活动与活动)。由于嗅觉受体神经元在其信息素响应的三个连续时间窗口中区分了信号参数(phasic; tonic; tonic;晚期,持久),因此分别分析了各自的响应参数。G蛋白的破坏 - 偶联的转导和磷脂酶C的阻滞减少并减慢了霍克莫斯活动阶段的阶段反应成分,而不会影响活动和休息期间的任何其他响应。使用细菌毒素阻止Gαo或持续激活GαS的Gα亚基的使用细菌毒素的持续激活影响了变质的信息素反应,而靶向GαQ和Gα12/13的毒素却无效。 因此,可以通过考虑昼夜节律时间和独特的气味响应成分来解决有关昆虫嗅觉的差异。使用细菌毒素的持续激活影响了变质的信息素反应,而靶向GαQ和Gα12/13的毒素却无效。因此,可以通过考虑昼夜节律时间和独特的气味响应成分来解决有关昆虫嗅觉的差异。与这些数据一致,磷脂酶Cβ4的表达取决于Zeitgeber时间,这表明昼夜节律调节的代谢素信息素转导级联级联反应最大化霍克莫斯活性阶段的信息素转导的敏感性和时间分辨率。
局灶性肌张力障碍是最常见的孤立肌张力障碍类型。尽管它们的病理生理学尚不清楚,但人们认为它涉及基底神经节 - thalamo - 皮层回路的异常功能。,我们使用了与健康对照组相比,在两个独立的患者,作者的抽筋和喉头肌张力障碍的患者组中,我们使用了Radioligand 11 C-NNC-112的高分辨率研究来检查纹状体多巴胺D 1受体功能。我们发现,双侧钉在作者的抽筋中,双侧壳质的多巴胺D 1接收器的可用性显着增加了19.6–22.5%,在喉头肌张力障碍中,右pramen和caudate核中的可用性增加了24.6-26.8%(所有P 4 0.009)。这表明局灶性肌张力障碍的直接基底神经节途径多动症。我们的发现通过间接的基底神经节途径与异常降低了多巴胺能降低,并在作者的绞痛和喉部肌张力障碍中降低了症状诱导的症状纹状体释放。在检查这些肌张力障碍形式的多巴胺D 1和D 2受体异常的拓扑分布时,我们发现纹状体内的直接和间接途径异常分离,并且在两种途径之间以及与相性多巴胺释放的区域之间的重叠,如果有任何重叠,则可以忽略不计。然而,尽管多巴胺能功能拓扑混乱,但多巴胺D 1和D 2受体的改变分别位于纹状体手和喉部中,在作者的痉挛和喉虫和喉二甲状腺中。这表明它们与疾病特征临床特征的直接相关性。增加D 1受体的可用性显示出与肌张力障碍持续时间的显着阴性相关性,而不是其严重程度,可能代表了这种疾病的发育型内表型。总而言之,在局灶性肌张力障碍中异常基底神经节功能的全面病理生理机制建立在上调的多巴胺D 1受体上,该受体异常增加直接途径的激发,下调多巴胺D 2 2受体在不正常的途径中降低抑制途径在不断变化的途径和弱化的NIG和静脉nig的NIG型静脉pH液中,并降低了抑制性pH的抑制作用。综合地,纹状体多巴胺能功能的这些畸变是直接和间接神经节途径之间不平衡的基础,并导致肌张力障碍的丘脑运动异常性过失性异常。
图2。去甲肾上腺素能系统对神经振荡的因果作用。a)围绕阶段LC刺激的皮质脑EEG的光谱图。b)LC刺激导致高频(10-100 Hz)与低频(1-10 Hz)的EEG功率比显着增加。从[105]采用。c)通过α-2激动剂可乐定给药来操纵去甲肾上腺素的系统,改变了皮质脑电图的相位振幅耦合(2只小鼠,9个疗程;作者未发表的数据)。
编程 Python、Matlab、R、PHP/JS、SQL、React-Native、Arduino 硬件 脑产品、Biosemi、Biopac、Enobio、NirX、EyeLink、PupilLabs、SmartEye、Tobii EEG 评估脑节律(频谱分析)、提取刺激引起的神经元激活(ERP)、解决逆问题(LORETA) ECG 心率和心率变异性(时间分析)、评估交感神经和副交感神经活动(频谱分析) fNIRS 评估血流动力学活动(时间分析) 眼动追踪 扫描路径、瞳孔测量 EDA 评估紧张和相位成分(时间分析)、评估交感神经活动(频谱分析) 统计 描述性和推断性统计、基础机器学习(SVM、LDA、LSTM)、荟萃分析 其他 LabStreamingLayer、LaTeX、Eprime、Qualtrics、Microsoft Office
有证据表明中枢神经系统(CNS)和自主神经系统(ANS)功能均具有延长的饮酒症。虽然这些障碍持续戒酒,但在睡眠期间,两个系统中都证明了功能的部分恢复。研究与皮质中枢神经系统反应相关的潜在ANS功能障碍(CNS-ANS耦合的损害),我们评估了与DONES的阶段心率(HR)流动相关的质量(HR)爆发,而DONES和那些没有引起K-Complex(KC)(KC)稳定的N2非型n2 n2 nreciD Eys Emportion(NREM)(NREM)的(NREM)的稳定性(NREM)(NREM)的16次abct(NR)(NR)的4月4日(KC)的4月4日(KC)的4月4日, ±8.5岁)和一组13个性别和年龄匹配的对照组合(46.6±9.3岁)。脑电图(EEG)和心电图(ECG)数据整个晚上都记录。饮酒问卷也对AUD患者进行了管理。AUD患者与基线在音调之前的对照组相比,HR升高。与对照组相比,在AUD组中,通过音调表现引起的KC相关的HR弹力显着较小,并且在AUD组中倾向于延迟时间,并且在AUD患者中,随后的减速也较小。在两组中,人力资源的增加均大,并且在产生KC时发生的时间比没有时发生,并且在组之间的KC效应的大小没有差异。阶段性人力资源变化受损,反射ANS功能障碍可能是由于心脏迷走神经传统的改变引起的。©2019由Elsevier Inc.但是,仅发现HR响应的时机与AUD中的寿命含量相关。需要确定这些新发现的临床意义和含义。