拓扑材料引起了极大的关注,因为它们在宽带和快速的光响应中,尤其是在红外状态下的潜力。然而,这些系统中的高载体浓度通常会导致光生载体快速重组,从而限制了光疗力。在这里,我们证明了MNBI 2 TE 4中的SB掺杂有效地降低了载体浓度并抑制电子孔重组,从而显着改善了可见的中型红外光谱的光电性能。最佳掺杂的MN(BI 0.82 SB 0.18)2 TE 4光电探测器在1550 nm时的响应时间为18.5μs,响应时间为0.795 mA W -1,响应时间为3.02 mA W -1,响应时间为4μm,响应时间为9.0μm。这些值与未居式MNBI 2 TE 4相比,这些值近两个数量级改善。我们的结果重点介绍了乐队工程作为增强基于拓扑材料的光电探测器的红外绩效的有效策略,为高敏性红外检测开辟了新的途径。关键词拓扑绝缘子,红外光电探测器,带工程,VDW材料,光伏效果简介
1.2 eV (间接、多层),理论电子和空穴迁移率分别约为 250 和 270 cm 2 V − 1 s − 1。6 – 8 WSe 2 以其独特的物理性质为具有优异光电性能的多功能电子和光电子器件打开了大门。近年来,基于范德华 (vdW) 垂直异质结构或横向 p – n 异质结的新型人工结构在 WSe 2 光电器件应用中引起了极大的兴趣。9 – 14 例如,Jo 等人证明,通过三苯基膦 n 掺杂法显着提高了基于 WSe 2 /h-BN 的 p – n 异质结光电探测器的光响应度。 15 Guo 等人报道,由 p 型 WSe 2 和 n 型 ZnO 结合制成的 WSe 2 – ZnO p – n 异质结光电探测器在 405 nm 光照下表现出 4.83 × 10 3 AW − 1 的超高光响应度。16 Liu 等人报道,基于 WSe 2 – Bi 2 Te 3 p – n 异质结的光电探测器在 633 nm 光照下可产生约 210 μ s 的快速响应时间和约 20.5 AW − 1 的高光响应度。17
短波式红外(SWIR)光电探测器对于许多科学和工业应用至关重要,包括监视,质量控制和检查。在近几十年中,基于有机半导体的光电检测器已经出现,证明了为宽带和窄带成像和感应场景增加实际价值的潜力,在这种情况下,诸如热预算敏感性,大面积孔径的必要性,成本考虑因素,轻量级和相结构的灵活性需求等因素优先考虑。现在已经认识到,有机光电探测器(OPD)的性能,尤其是它们的特定检测率,最终受到陷阱状态的限制,陷阱状态普遍存在于无序的半导体中。这项工作采用了一种利用这些中间隙状态来特定创建SWIR照片响应的方法。为此,这项工作引入了在批量异质结(BHJS)光电二极管中“陷阱掺杂”的一种反直觉方法,其中有意将少量的来宾有机分子故意纳入半强化供体中:受体宿主系统。遵循这种方法,这项工作证明了可见的至静宽宽带OPD的概念验证,在关键光电探测器指标中接近(并在某种程度上,甚至超过)最先进的性能。陷阱掺杂方法是,即使目前只有概念验证,它广泛适用于各种光谱窗口。使用将限制变成功能的非常规策略来进行工程光进行的新模式。
抽象的片上光电探测器是光学通信中必不可少的组件,因为它们将光转换为电信号。光压计是光电探测器的类型,它通过在光吸收时由电子温度波动引起的电阻变化起作用。它们被广泛用于从紫外线到mir的宽波长范围,并且可以在宽大的材料平台上运行。在这项工作中,我引入了一种新型的波导集成剂量计,该重点在标准材料平台上从NIR到MIR以透明的导电氧化物(TCO)作为活性材料运行。此材料平台可以使用相同的材料同时构建调制器和光电探测器,该材料完全兼容CMO,并易于与被动芯片组件集成。此处提出的光压计由放置在肋光子波导内部的薄质TCO层组成,以增强光吸收,然后将TCO中的电子加热至高于1000 K的温度。电子温度的升高导致电子迁移率降低电子迁移率和导致的电阻变化。因此,只需几乎没有光学输入功率的微量流量,就可以达到超过10 A/W的响应率。计算表明,通过较低的TCO掺杂,可以预期进一步改进,从而在片上光电探测器中打开新的门。
理解和优化光活性二维 (2D) 范德华固体的特性对于开发光电子应用至关重要。在这里,我们详细研究了 InSe 基场效应晶体管 (FET) 的层相关光电导行为。使用 λ = 658 nm (1.88 eV) 的连续激光源在 22.8 nW < P < 1.29 μW 的很宽照明功率范围内研究了具有五种不同通道厚度(t,20 nm < t < 100 nm)的 InSe 基 FET。所研究的所有器件都显示出光电门控的特征,然而,我们的研究表明光响应度在很大程度上取决于导电通道的厚度。场效应迁移率 (μ FE ) 值(作为通道厚度 t 的函数)和光响应度 (R) 之间的相关性表明,通常 R 随着 μ FE 的增加(t 降低)而增加,反之亦然。当 t = 20 nm 和 t = 100 nm 时,器件的最大响应度分别为 ~ 7.84 A/W 和 ~ 0.59 A/W。在施加栅极电压的情况下,这些值可能会大幅增加。本文介绍的基于结构-性能相关性的研究表明,可以调整 InSe 基光场效应晶体管的光学性能,以用于与太阳能电池中的光电探测器和/或有源层相关的各种应用。
接触模式 接触模式是 AFM 中最容易理解的模式,也是扫描电容模式 (SCM)、扫描扩展电阻模式 (SSRM) 等附加模式的基础。图 3 显示了一个典型的 AFM 悬臂。悬臂和尖端通常作为一个单元用硅制造而成。常见尺寸为悬臂长度约为 100µm,尖端半径 <10nm,弹簧常数从 10mN/m 到 100N/m。1 尖端本身可以具有各种涂层,以便能够测量其对某种相互作用的灵敏度 - 从用于导电性的金属到用于生物特异性的配体。通过监测所连接悬臂的自由端的位移来测量尖端和样品表面之间的任何相互作用。有几种方案可以完成该任务,包括光束反弹、电容传感器、干涉法。光束反射方案,即激光束从悬臂反射到分段光电探测器,可以说是最常见的方案,并且由于各种原因而建立。2 悬臂的固定端可以静态安装,也可以安装在小型致动器上,以实现动态成像模式。在操作过程中,悬臂/探针是经过改进的经典闭环反馈系统的一部分(见图 2)。
四元铜银铋碘化合物代表了一类有前途的新型宽带隙 (2 eV) 半导体,可用于光伏和光电探测器应用。本研究利用气相共蒸发法制造 Cu 2 AgBiI 6 薄膜和光伏器件。研究结果表明,气相沉积薄膜的性质高度依赖于加工温度,表现出针孔密度增加,并根据沉积后退火温度转变为四元、二元和金属相的混合物。这种相变伴随着光致发光 (PL) 强度和载流子寿命的增强,以及在高能量 (≈ 3 eV) 下出现额外的吸收峰。通常,PL 增加是太阳能吸收材料的理想特性,但 PL 的这种变化归因于 CuI 杂质域的形成,其缺陷介导的光学跃迁决定了薄膜的发射特性。通过光泵太赫兹探测光谱法,揭示了 CuI 杂质阻碍了 Cu 2 AgBiI 6 薄膜中的载流子传输。还揭示了 Cu 2 AgBiI 6 材料的主要性能限制是电子扩散长度短。总体而言,这些发现为解决铜银铋碘化物材料中的关键问题铺平了道路,并指明了开发环境兼容的宽带隙半导体的策略。
• 筛查适用于无症状婴儿。如果婴儿在筛查前 24 小时出现发绀、呼吸急促、呼吸工作量增加、肿胀、喂食时容易疲劳、出汗或体重增长缓慢等迹象,应尽快进行评估。• 选择部位:右手;任一只脚。• 将光电探测器放在手/脚的外侧(第 4 至第 5 个手指/脚趾下方)。• 将传感器胶带缠绕在四肢上。• 确保光发射器正对着光电探测器。• 如果使用可重复使用的传感器,请使用供应商推荐的胶带固定传感器;不要使用胶带或用手将传感器固定到位。• 为了获得最佳效果,在出院前尽可能在出生后 24 小时内进行脉搏血氧饱和度筛查。• 婴儿不应感到痛苦或心血管不适。• 确保婴儿清醒、舒适且安静。父母可以抱着婴儿,如果襁褓可以帮助婴儿保持平静,也可以将婴儿包裹起来。任何动作、颤抖或哭泣都会影响读数的准确性。• 使用经食品和药物管理局批准用于新生儿的脉搏血氧仪。建议使用环绕式传感器。
六角硼硝酸盐(H-BN)由于其令人难以置信的电气,热和机械性能而近期引起了很多关注。其化学成分导致其化学惰性和无毒性,这使其与石墨材料不同(1)。过去,H-BN由于其摩擦学特性,即摩擦,润滑,表面相互作用。例如,这些特性已被理论上有效为航天器上的涂层,因为其在高温下保持其结构的能力(2,3)。对H-BN的分析较小,因为六角硼氮化硼纳米片(BNNS)也很感兴趣。正如已经发现石墨材料具有广泛的应用程序一样,BNN也是如此。bnns可以用作癌症药物递送的一种方法,因为它比基于石墨烯的材料更具生物相容性和毒性,但保留了许多相同的特性(4)。还发现了在量子信息中使用H-BN的动机,将量子通信科学用作“单光子发射器”(5)。我们对H-BN的特定兴趣源于其在高温下用作紫外光探测器的理论上的使用(6)。
摘要 - Deep-ultraviolet(DUV)光电检测对其在许多军事和民用领域的重要应用中获得了广泛的研究兴趣。在这项工作中,我们介绍了大区域二维(2D)PDTE 2多层的合成,可以将其直接转移到GAN基板上,以构建垂直异质质质,以进行可见的盲型DUV PhotoDeTection。在265 nm的光照射下,异质结构显示出独特的pho-tovoltaic行为,使其能够充当自动驱动光电探测器。重要的光响应参数,例如I光/I暗比,响应性,特定的DUV/可见度(265 nm/450 nm)的拒绝率分别高达10 6,168.5 mA/w,5.3×10 12 JONES和10 JONES和10 4。通过应用-1.0 V的小反向偏置,可以进一步增强254.6 mA/W。此外,光电探测器可以用作DUV光图像传感器,以可靠地记录具有不错的分辨率的“ H”模式。本研究铺平了一种将高性能成本效益的DUV光电探测器设计到实用的光电应用的方法。