摘要:在本研究中,我们展示了施加的机械应变与单层 MoS 2 光响应度增加之间的直接相关性。这表明拉伸应变可以提高单层 MoS 2 光电探测器的效率。在我们的设备中观察到的高光电流和延长的响应时间表明,设备主要受光电门控机制控制,施加拉伸应变时,这种机制变得更加突出。此外,我们已经证明,非封装的 MoS 2 单层可以在基于应变的设备中使用许多次循环和长时间,在环境条件下表现出耐久性而不会丧失功能。这种坚固性强调了 MoS 2 在进一步功能化和利用不同柔性传感器方面的潜力。关键词:MoS 2、应变、应变传感器、光电探测器、原子力显微镜、PL 光谱、光电流光谱
近几年,钙钛矿材料成为光电器件领域的“明星材料”,具有巨大的实际应用潜力。钙钛矿晶格的对称/非对称性不仅影响钙钛矿的能带结构、声子频率和缺陷态,而且对器件性能也起着关键作用。因此,研究钙钛矿材料的对称/非对称性和晶体质量具有重要意义。在“钙钛矿的进展:生长、表征和光电器件”特刊中,我们将主要关注钙钛矿领域的最新进展,包括:1. 生长无机和杂化钙钛矿的新方法;2. 合成钙钛矿的光学特性、形貌和晶体结构;3. 阴离子/阳离子交换/排列和晶体对称/非对称性;4. 钙钛矿在不同环境中的稳定性;5. 光电器件的制备,包括光电探测器、太阳能电池、激光二极管和发光二极管。
在血液中。易于使用的非侵入式指夹能够容纳光源(通常是 LED)和光电探测器,以监测患者的脉搏率、血氧饱和度、血流等。这是一种患者可以在家使用的简单设备。定期监测血氧饱和度和其他生命体征有助于医疗保健提供者了解导致变化的原因。收集的这些额外数据还可以帮助确定患者是否需要就诊以及在患者到达之前需要进行哪些检查。数字趋势正在增加联网设备的采用。借助正确的传感器技术,低功耗蓝牙 (BLE) 等低能耗连接可以将数据发送到手机或中间设备,以安全地在线向医生发送数据。这可以帮助医生收集更多信息,同时提高患者的活动能力和生活质量。
摘要:石墨烯和其他二维 (2D) 材料的出现为光电子应用提供了巨大的潜力。人们提出了各种器件结构和新颖的机制来实现具有独特检测特性的光电探测器。在这篇小综述中,我们重点介绍了自驱动光电探测器,它在物联网和可穿戴电子产品所需的低功耗甚至无功率运行方面具有巨大潜力。为了解决自驱动特性的一般原理,我们提出并阐述了基于二维材料的自驱动光电探测器对称性破缺的概念。我们讨论了自驱动光电探测器破坏对称性的各种机制,包括不对称接触工程、场诱导不对称、PN 同质结和 PN 异质结构。回顾并比较了基于这些机制的典型器件实例。对当前自驱动光电探测器的性能进行了严格评估,并讨论了目标应用领域的未来发展方向。
从生物复合眼中获得灵感,人造视觉系统具有生动的各种视觉功能性状,最近才脱颖而出。然而,大多数这些人造系统都依赖于可转换的电子设备,这些电子设备遭受了全局变形的复杂性和约束几何形状,以及光学和检测器单元之间的潜在不匹配。在这里,我们提出了独特的针孔复合眼,将三维印刷的蜂窝光学结构与半球形,全稳态,高密度的钙钛矿纳米纳米型光电探测器阵列结合在一起。无镜头的针孔结构可以使用任意布局设计和制造,以匹配基础图像传感器。光学模拟和成像结果彼此良好,并证实了我们系统的关键特性和功能,其中包括超级视野,准确的目标定位和运动跟踪功能。我们通过成功完成移动的目标跟踪任务,进一步证明了我们独特的复合眼对先进的机器人视觉的潜力。
是物联网的“眼睛”和“耳朵”,光学传感器和声学传感器是硬件系统中的基本组合。如今,主流硬件系统通常包含众多离散的传感器,转换模块和处理单元,往往会导致与人类感觉途径相比,相比之下,复杂的体系结构效率较低。在这里,提出了一种受人感知系统启发的视觉原告光电探测器,以启用具有计算能力的多合一视觉和声学信号检测。此范围不仅捕获了光,还可以光学记录声波,从而在单个单元中实现“观看”和“聆听”。栅极可调阳性,负和零光呼应会导致高度可编程的疾病。此可编程性可以执行各种函数,包括视觉特征推断,对象分类和声波操纵。这些结果展示了在神经形态设备中扩展受访方法的潜力,从而开辟了新的可能性来制作智能和紧凑的硬件系统。
摘要我们根据近红外光谱制度的芯片尺度集成光电探测器的实现和表征,基于在氮化硅硅硅硅基上的摩西2 /WS 2异缝的整合。这种配置在780 nm的波长(表明内部增益机制)下达到〜1 a w -1的高响应性,同时将暗电流抑制至〜50 pa的水平,与仅Mose 2的参考样本相比,降低了〜50 pa的水平。我们测量了暗电流的功率频谱密度低至〜1×10 - 12 a hz -0.5,从中,我们从中提取噪声等效功率(NEP)为〜1×10-12 - 12 W Hz -0.5。为了演示设备的实用性,我们将其用于表征与光电探测器相同芯片上的微林共振器的传输函数。能够在芯片上整合局部光电电视机并在近红外制度下操作具有高性能的设备,这将在光学通信,量子光子学,生物化学传感等的未来集成设备中发挥关键作用。
摘要:低成本、易于集成的硅 (Si) 光子学光电探测器 (PD) 仍然是光子集成电路 (PIC) 的瓶颈,特别是对于 1.8 μ m 以上的波长。多层铂硒化物 (PtSe 2 ) 是一种半金属二维 (2D) 材料,可以在 450°C 以下合成。我们通过在 Si 波导上保形生长直接集成基于 PtSe 2 的 PD。PD 在 1550 nm 波长下工作,最大响应度为 11 mA/W,响应时间低于 8.4 μ s。1.25 至 28 μ m 波长范围内的傅里叶变换红外光谱表明 PtSe 2 适用于远至红外波长范围的 PD。我们通过直接生长集成的 PtSe 2 PD 优于通过标准 2D 层转移制造的 PtSe 2 PD。红外响应性、化学稳定性、低温下选择性和保形生长以及高载流子迁移率的潜力相结合,使 PtSe 2 成为光电子和 PIC 的有吸引力的 2D 材料。关键词:铂硒化物、光电探测器、硅光子学、二维材料、红外 ■ 简介
摘要:石墨烯/硅异径光电探测器由于高表面状态和界面处的低屏障高度而遭受高黑暗电流,这限制了它们的应用。在这项研究中,我们通过磁控溅射引入了HFO X界面层以解决此问题。使用这种新结构,在偏置电压为-2 V的情况下,暗电流降低了六次。在460 nm的照明下,响应性为0.228a/w,检测率为1.15×10 11 cmHz 1/2 w -1,噪声等效的功率为8.75×10-5 pw/hz 1/2/2/2/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/hz 1/2/2/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/hz。此外,HFO X界面层中的氧空位为电荷载体提供了导电通道,导致光电流增长2.03倍,外部量子效率为76.5%。光电探测器在低偏置电压下保持良好的光响应能力。这项工作展示了HFO X膜作为界面层材料的出色性能,并为高性能光电探测器提供了新的解决方案,以及提高太阳能电池光伏转换效率的新途径。
ge是一种集团半导体,广泛用于基于SI的电子设备,因为独特的优势在于与标准互补金属氧化物半导体(CMOS)处理,出色的载体迁移率,相对丰度和低毒性[1]。最近,GE吸引了越来越多的研究兴趣,用于制造具有成本效益和有效的功能性电子光综合电路(EPICS)[1,2]。在室温下,GE的直接带隙为0.8 eV,对应于1,550 nm处的吸收边缘。1,300 nm和1,500 nm之间的强光吸收使GE成为光纤电信设备的理想光电探测器(PD)材料[3]。但是,由于SI和GE之间的4.2%晶格不匹配,将GE直接集成在SI底物上是一项挑战。已经采取了强烈的努力,使用不同的方法(包括两步生长[4,5]和分级的SIGE缓冲液[6],为了制造高性能GE正常生命值PDS [3,7]和波导(WG)PDS(WGPDS)PDS(WGPDS)[8,9] [8,9]。但是,GE活动层和GE/SI接口相对有缺陷,从而降低了设备性能。此外,