红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能
如今,制造商必须同时处理大量信息,以高度准确的水平与工业革命的高发展速度保持同步。这一需求导致了机器人的发明 - 在发展的各个方面,几乎每个方面都是人类的宝贵助手。1在rst,创建机器人是为了支持集会线的人;但是,他们可以执行更复杂的任务,例如制造,娱乐,交付处理等。2 - 4,无论根据实际要求,各种形状和大小如何,机器人都用两个主要组成部分制造:机械细节和编程,因此请ware。5个信息通过这些零件收集的信息已处理并转移给董事。6
摘要:在这项研究中,通过在SI底物上的纳米结构NIO的直接自旋涂层制造了基于石墨烯/Nio/N-Si的自动宽带光电探测器。Nio/Si异质结构的Curren T – V Oltage测量表现出在光照明下具有增强的pho-drumerent的整流特性。在300 nm至800 nm的范围内测量了光反检测能力,并且由于NIO的宽带隙,观察到紫外线区域的较高光响应。顶部的石墨烯透明导电电极的存在进一步增强了整个测得的波长区域的响应性,从350至800 nm。,在插入石墨烯顶层时,发现NiO/Si检测器在350 nm处的光响应从0.0187增加到0.163 a/w。在零偏置处的高摄影电流比(≃104)表明该设备在节能高性能宽带光电检查器中具有有利的应用。
摘要:本文介绍了一种使用低成本溶液处理技术制造有机基器件的方法。在环境条件下,在 ITO 涂层玻璃基板上制造了一种氯取代的二维共轭聚合物 PBDB-T-2Cl 和 PC 71 BM 支持的纳米胶囊水合五氧化二钒 (HVO) 的混合异质结作为空穴传输层 (HTL) 光电探测器。该器件形成了一个优异的有机结二极管,整流比良好,约为 200。该器件在光电导模式(反向偏置)和绿光波长的零偏置下还表现出优异的光电检测特性。本文报道了非常高的响应度 ~6500 mA/W 和 1400% 的高外部量子效率 (EQE)。所提出的有机光电探测器分别表现出优异的响应和恢复时间 ~30 和 ~40 毫秒。
本报告涉及基于ZnO纳米棒(NRS)的新型紫外线(UV)光电探测器(PD),使用化学浴物(CBD),ZnO纳米棒(NRS),涉及ZnO纳米棒(NRS),ZnO/ppc上的可蛋白质氧化聚丙烯(PPC)底物(PPC)底物(ZnO/PPC)。通过利用X射线衍射(XRD),Fiff-ELD发射扫描电子显微镜(FESEM),能量分散X射线光谱(EDX)和UV – VIS分心仪,研究了样品的结构,形态和光学特性。ZnO/PPC PD的光敏度值分别为52.48、47.46和42.53,分别为385 nm的波长,分别为5、10和15 V。当ZnO/PPC(PD)在5、10和15 V偏置电压下为375、385和405 nm的ON/OFF紫外线脉冲照明时,响应和恢复时间是良好的值。在385 nm的5 V和15 V下,电流增益和量子效率的最大值分别为1.52和550.7。2020 Elsevier B.V.保留所有权利。
Mansour Aouassa、Saud Algarni、Ibrahim Althobaiti、Luc Favre、Isabelle Berbezier。通过固态脱湿绝缘体上硅生长的硅纳米晶体的高灵敏度 MIS 结构,可用于太阳能电池和光电探测器应用。《材料科学杂志:电子材料》,2022 年,33 (24),第 19376-19384 页。�10.1007/s10854-022-08774-w�。�hal-03988811�
在光电探测器技术中,瓶颈被确定为能够检测低强度电磁辐射的新型材料的挑战,并且与综合电路(IC)制造也兼容。在各种金属氧化物半导体中,基于过渡金属氧化物(TMOS)材料更适合于由于其宽带,热稳定性和化学稳定性而导致的紫外线(UV)光电探测器应用。尤其是,三氧化钨(WO 3)已被证明是光子应用中最合适的候选者,包括电动型,光色素和气体传感器设备。在此,以增强性能增强的基于WO 3的光电探测器测试设备的开发已集中。WO 3薄膜以不同的氧局压(P O 2)的形式沉积在SIO 2 /Si底物上,并使用射频(RF)Magnetron溅射技术沉积在溅射压力条件下。在论文的第一部分中,溅射技术(如P o 2)中最重要的生长参数和用于沉积WO 3薄膜的溅射压力是根据光电探测器测试设备的性能进行了优化的。使用各种表征技术(包括X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),X射线光电学光谱(XPS),Ra-Many和Atomic Force Microscopy(AFM),对结构,形态和化学状态进行了分析。Ti/Wo 3/Ti测试磁发炉在382 nm的紫外线照明下显示出0.166 a/w的较高响应性,在非常低的功率密度为0.66 mW/cm 2的情况下。生长的WO 3薄膜用于使用钛电极(TI)电极的Fabiale Metal-Metal-Senemenductor-Metal(MSM)平面结构化光电探测器测试设备,并测量了光电探测器参数,例如光电构成,响应率,响应性,检测性,检测率和外部量子效率(EQE)。为了实现从紫外线到可见区域的多光谱吸收,在论文的第二部分中介绍了新的基于WO 3的异质结构。最初,溅射基于石墨烯的溅射(GR/WO 3)异质结构被制造以研究紫外可见的光电探测器性能。GR/WO 3异质结构在512 nm的可见照明下达到了0.085 A/W的最大响应性。然而,由于石墨烯的某些局限性,WS 2 /WO 3异质结构是通过化学蒸气沉积(CVD)技术将WS 2纳米结构在WO 3层上种植到WO 3层的方法。在这里,使用互插的银(AG)电极制造Ag /WS 2 /WO 3 /Ag光电探测器测试设备。由于WS 2的纳米结构和外部电子迁移率的形成,在紫外线和可见的照明下分别实现了2.94 A/W和2.01 A/W的高响应性。获得的结果测试是WS 2 /WO 3异质结构是宽带紫外可见光电探测器的有前途的候选者,并且可以使用其他TMO和TMD进行相同的策略,以实现光电式Decessices的高性能光电探测器。
图 3 (a) 基于皱纹石墨烯-AuNPs 混合结构的光电探测器集成在隐形眼镜上及其光响应。[31] 经皇家化学学会许可转载。(b) 当激光点照射电极之间的 rGO 区域时,会发生光伏响应,并且与激光点的位置有关。[32] 经 Springer Nature Limited 许可转载。(c) 用半导体量子点光电探测器敏化的柔性石墨烯的摄影图像和示意图。(d) 基于光电探测器的反射模式和透射模式 PPG 的光电容积图 (PPG) 的示意图和 (e) 摄影图像。(f) 光电探测器透射和反射模式的归一化 PPG 结果。[36] 经美国科学促进会许可转载。 (g)由五苯有机半导体、金纳米粒子(AuNPs)构成的柔性石墨烯光电探测器的示意图和照片图像。(h)石墨烯光电探测器的存储性能。[33] 经美国化学学会许可转载,版权所有。(i)柔性石墨烯/钙钛矿光电探测器阵列(24×24像素)的示意图和照片图像。(j)用于颜色辨别的柔性石墨烯/钙钛矿光电探测器图像传感器的示意图和相应的输出图像。[34] 经中国科学出版社许可转载。
每个内爆会产生许多中子:通常在原子核中与质子和伽马射线一起限制的中性颗粒。这些颗粒的庞大数量会在内爆室周围产生严重的辐射环境,并会损害许多常见类型的诊断仪器。Photek探测器中使用的真空管技术可以在这些高水平的辐射中生存,这也使它们成为空间严峻的辐射环境的宝贵技术。Photek PhotodeTector不仅可以在ICF内爆的严酷辐射环境中幸存下来,而且还在世界上最快的光检测器中。