集成的光学器件用于在鲁棒和紧凑的材料内实现天文干涉法,从而提高了仪器的稳定性和灵敏度。为了在Hα线(656.3nm)上执行差分相测量,首先是600-800NM光谱互动计,即将开发光子积分电路(PIC)。此图片执行来自望远镜学生子孔的梁的可见组合。在这项工作中,玻璃中K +:Na +离子交换制造的Teem Photonics波导以单模范围和模式场直径为特征。波导扩散的索引轮廓是在BeamProp软件上建模的。模拟了第一光束组合器的构建块,尤其是可观的定向耦合器和被动π/ 2相变,以实现潜在的ABCD干涉测量组合。
光脉冲成型是超快光学,射频光子和量子通信的强大技术。现有系统依赖于带有平面波导段的批量光学元件或集成平台进行空间分散,但它们在实现填充器(少量或sub-GHz)频谱控制方面面临限制。这些方法需要相当大的空间,或者在组装以实现实现分辨率的情况下,从预测的相误差和光损失中进行了措施。解决这些挑战时,我们使用具有内联相位控制和高光谱分辨率的微波炉过滤器库提出了铸造式六通道硅光子塑造器。利用现有的基于梳子的光谱技术,我们设计了一个新型系统来减轻热串扰并实现我们的芯片上塑形器的使用。我们的结果表明,在3、4和5 GHz的可调通道间距上,塑形器能够在六个梳子线上相同的能力。特别是在3 GHz通道间距下,我们展示了时间域中的任意波形的产生。这种可扩展的设计和控制方案有望满足未来对高精度光谱塑形功能的需求。
光子时间晶体(PTC)提供了一个全新的平台,该平台由于定期变化的电磁特性而显示出光波扩增。控制这种扩增的需求变得越来越重要,尤其是随着基于元表面的PTC实现的出现。这项工作引入了PTC中孤立的时间缺陷,以建立对扩增的新程度。我们发现,在存在缺陷的情况下,对于带盖的特定动量值(𝒌𝒌)的特定值伴随着对扩增量的显着影响,透射率和反射率接近统一。我们显示了时间缺陷对PTC周期强度指数增长的影响。效果主要取决于PTC的浮频频率,后者在𝒌𝒌时变为真实,从而产生四个脉冲,而不是两种作为间隙传播的结果。我们进一步证明,通过操纵缺陷的时间和介电特性,可以调节动量中的缺陷状态以为专业应用提供设计兴趣。
1 博士学校,天文学和应用计算机科学学院,Jagiellonian大学,Jagiellonian大学,Stanis Loajasiewicza教授11,PL-30-348 KRAK LARA LOJASIEWIEWICA奥地利因斯布鲁克4物理与天文学学院,利兹大学,英国利兹大学,英国,英国,LS2 9JT 5喷气推进实验室,加利福尼亚州加利福尼亚实验室技术学院,4800 Oak Grove Drive,Pasadena,California 91109-8099,USA 91109-8099,USA 6美国6号电气和计算机工程学,CACALIDIA,CAIVISE,CAIvers,3401。 7 Centrum Kaca,Stanis Lawa Lojasiewicza教授11,PL-30-348Kraków,波兰(日期:Sepebeke 13,2024) div>博士学校,天文学和应用计算机科学学院,Jagiellonian大学,Jagiellonian大学,Stanis Loajasiewicza教授11,PL-30-348 KRAK LARA LOJASIEWIEWICA奥地利因斯布鲁克4物理与天文学学院,利兹大学,英国利兹大学,英国,英国,LS2 9JT 5喷气推进实验室,加利福尼亚州加利福尼亚实验室技术学院,4800 Oak Grove Drive,Pasadena,California 91109-8099,USA 91109-8099,USA 6美国6号电气和计算机工程学,CACALIDIA,CAIVISE,CAIvers,3401。 7 Centrum Kaca,Stanis Lawa Lojasiewicza教授11,PL-30-348Kraków,波兰(日期:Sepebeke 13,2024) div>博士学校,天文学和应用计算机科学学院,Jagiellonian大学,Jagiellonian大学,Stanis Loajasiewicza教授11,PL-30-348 KRAK LARA LOJASIEWIEWICA奥地利因斯布鲁克4物理与天文学学院,利兹大学,英国利兹大学,英国,英国,LS2 9JT 5喷气推进实验室,加利福尼亚州加利福尼亚实验室技术学院,4800 Oak Grove Drive,Pasadena,California 91109-8099,USA 91109-8099,USA 6美国6号电气和计算机工程学,CACALIDIA,CAIVISE,CAIvers,3401。 7 Centrum Kaca,Stanis Lawa Lojasiewicza教授11,PL-30-348Kraków,波兰(日期:Sepebeke 13,2024) div>
人工智能 (AI) 是目前研究领域最活跃的领域之一,这主要归功于机器学习 (ML) 在遗传学、合成化学、语音识别和图像处理等领域取得的令人瞩目的成果。该技术使计算机能够自行学习,而无需明确编程,以识别数据中的模式,建立解释世界的模型,并做出不明确遵循预定义规则和模型的预测 [ 1 ]。人工智能为数据分析和解释、预测建模以及系统和过程的自动化、(自)自适应设计和控制提供了强大的计算工具包。它最大的优势在于它能够处理大数据、多维和高复杂性
实现多功能集成光子平台是未来光信息处理的目标之一,由于多种集成挑战,实现该平台通常需要很大的尺寸。在这里,我们基于逆向设计实现了一个超紧凑占用空间的多功能集成光子平台。该光子平台紧凑,具有86个逆向设计的固定耦合器和91个移相器。每个耦合器的占用空间为4μm x 2μm,而整个光子平台为3mm x 0.2mm,比以前的设计小一个数量级。一维Floquet Su-Schrieffer-Heeger模型和Aubry-André-Harper模型的测得保真度分别为97.90(±0.52)%和99.34(±0.44)%。我们还使用片上训练演示了手写数字分类任务,测试准确率为87%。此外,通过演示更复杂的计算任务证明了该平台的可扩展性,为实现超小型集成光子平台提供了有效的方法。
多糖是一类生物聚合物,在生物体中被广泛用于从结构增强到能量储存等各种用途。在自然界中发现的众多类型的多糖中,纤维素是最丰富的,因为它存在于每种植物中。纤维素通常在细胞壁内组织成纳米级结晶原纤维,以赋予植物组织结构完整性。然而,在一些物种中,这种原纤维被组织成螺旋纳米结构,其周期性与可见光相当(即在 250 – 450 nm 范围内),从而产生结构着色。因此,当以生物灵感作为设计原则时,很明显螺旋纤维素结构是开发可持续光子材料的一种有前途的方法。
虽然对低噪声,易于操作和网络[1]保持着巨大的希望,但有用的光子量子计算已被MILIONS制造的超出状态组件的需求[2-6]所取得了。在这里,我们引入了一个可制造的平台[7],用于带有光子的量子计算。我们将一组单一集成的基于硅光子的模块标记,以生成,操纵,网络和检测预示的光子量子量,表明具有99的双轨光子量子。98%±0。01%的状态预先预期和测量保真度,带有99的独立光子源之间的Hong-ou-mandel量子干扰。50%±0。可见度25%,两分融合与99。22%±0。12%的保真度,以及99的芯片到芯片量子。72%±0。04%的保真度,以光子检测为条件,不考虑损失。我们预览了一系列下一代技术,即低降低氮化硅波导和组件,以解决损失以及制造耐受性光子源,高效效率光子 - 单位分辨率的探测器,低溶质粉末 - 粉状粉末粉末的含量和滴定液滴定相位的较高的转换阶段。