量子计算的优势。15 在大量纠缠簇态下,利用光子进行通用量子计算是可能的。16–18 集成量子光子学为基础量子物理研究和深度量子应用的实现提供了一个紧凑、可靠、可重新编程和可扩展的平台。19 利用成熟的互补金属氧化物半导体 (CMOS) 制造工艺,集成光子量子技术自 2008 年在硅波导电路上的受控非逻辑门中首次演示以来取得了重大进展。20 这包括先进材料系统的开发、20–32 主要量子通信协议的实现、28、32、33 以及量子计算和量子模拟算法的原理验证演示。34–36 我们推荐参考文献 19 和 37 中有关这些主题的其他评论。在本综述中,我们总结了在集成硅光子量子芯片上产生、操纵和测量纠缠光子态的实验进展。在第二部分中,我们介绍了片上量子态在单光子不同自由度 (DoF) 中的表示。在第三部分中,我们介绍了集成参量光子对源(非纠缠光子对)。然后,在第 4 部分中,我们将重点介绍各种类型的光子纠缠态,包括纠缠双光子态和多光子纠缠态
摘要。检测引力介导的纠缠可以提供引力场遵循量子力学的证据。我们报告了使用光子平台模拟该现象的结果。该模拟测试了通过使用变量来介导纠缠来探测变量的量子性质的想法,并产生了理论和实验见解,阐明了未来引力实验所需的操作工具。我们采用三种方法来测试纠缠的存在:贝尔测试、纠缠见证和量子态断层扫描。我们还模拟了引力坍缩模型预测的或由于实验装置不完善而导致的替代方案,并使用量子态断层扫描来证明不存在纠缠。模拟强化了两个主要教训:(1)哪些路径信息必须首先编码,然后从引力场中相干地删除;(2)进行贝尔测试可以得出更有力的结论,证明存在引力介导的非局域性。
摘要 — 在本文中,我们介绍了一种 TM 偏振 C 波段的一维光子晶体条带波导 (1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准 CMOS 技术即可轻松实现。通过 3D 有限元法 (FEM) 进行了数值研究。通过优化器件的几何参数,提高了透射率和偏振消光比 (PER)。因此,TM 偏振光可以在波导中传播,在整个 C 波段电信波长窗口内损耗约为 2 dB,而 TE 偏振光的传输损耗高达 >30 dB。因此,在整个 C 波段波长范围内可获得 ~28.5 dB 的 PER。所提出的器件的总长度约为 8.4 µm,包括两端的 1 µm 硅条带波导段。基于本文的研究,可以实现需要严格偏振滤波的多种光子器件。
准晶体的特征是没有翻译对称性的远程顺序[1]。在数学中,它们对应于无限的非周期性瓷砖。他们可以拥有与翻译的旋转对称性,例如著名的五角形对称性对称性[2]。另一个有趣而重要的情况是十二杆对称性[3-5],可以从两个蜂窝晶格[6-9]旋转30°的叠加中获得。这种配置尤其及时,因为Moir´e蜂窝晶格的极端流行,例如魔法角扭曲的双层石墨烯[10],该[10]对于小于30°的旋转角度获得了。moir´e晶格和准晶体具有许多共同的特性,例如在其频谱中存在平坦带[11-13]。在许多领域中研究了十二型准晶体:化学[14 - 17],材料科学[4,18,19],电子[8],拓扑物理学[20-22]和光子学[7,23 - 31]。对于1D准晶体或准静态晶格,使用aubry-and-andR´e模型[32]获得了许多重要的分析结果[32]:而不是考虑一个在个体地点的位置,而没有转化对称性的结构,而是在一个定期的晶状体上以无效的态度固定在一定的位置上,而不是可及时的效率。现在,从理论上建立并在实验上证明了这种1D准晶体的分散包含遵守差距标记定理的无限差距[37-40]。每个频带都是无限窄的(平坦),并且填充
摘要。检测重力介导的纠缠可以提供证据表明重力场服从量子力学。我们使用光子平台报告了现象模拟的结果。模拟测试通过使用该变量介导纠缠并产生理论和实验性见解的量子性质的想法,从而阐明了将来的重力实验所需的操作工具。我们采用三种方法来测试纠缠的存在:贝尔测试,纠缠证人和量子状态层析成像。我们还模拟了通过重力崩溃模型预测的替代方案,或者是由于实验设置中的不完美,并使用量子状态断层扫描来证明缺乏纠缠。模拟加强了两个主要的课程:(1)必须先对哪些路径信息进行编码,然后从重力场中连贯擦除,并且(2)执行铃铛测试导致更强的结论,以证明重力介导的非局部性的存在。
光子平台在均衡(P),时间反转(T)和二元性(D)下不变,可以支持类似于具有保守自旋的时间反向不变Z 2电子系统中的拓扑阶段。在这里,我们证明了基本的旋转阶段对非省力效应的弹性,尤其是物质耗散。我们确定非热,pd -Ampricric和相互光子绝缘子属于两个拓扑上不同的类别。我们的分析侧重于PD-对称和相互平行的板波导(PPW)的拓扑。我们发现标记拓扑相变的板中的临界损失水平。发现PT D-对称系统的哈密顿量由具有公共带隙的凯恩 - 梅勒型哈密顿量的无限直接总和组成。这种结构导致波导的拓扑充电是由于粒子孔对称性而导致的整数不良总和。该系列的每个组件对应于自旋极化边缘状态。我们的发现提出了拓扑光子系统的独特实例,该实例可以在其带隙中容纳有限数量的边缘状态。
事件介绍再次在光子生态系统的利益相关者将在瓦伦西亚举行的第八版光子整合周,这是为期三天的活动,结合了主题演讲,商业展览以及讨论和网络的时间。此版本旨在强调大型半导体的繁荣,尤其是与光子学有关的繁荣。与以前的版本一样,我们将重点关注光子学领域的新衍生产品,以及在近乎中间的未来中使用或可以使用综合光子学的战略公司。所选的扬声器代表来自技术和应用的光子整合的不同领域。更多信息:https://piw.webs.upv.es/地方组织委员会教授PascualMuñozMuñoz教授,Telecomunicaciones y aplicaciones multimedia(iteam)de la la upv。初步时间表
光子系统之间的电磁波耦合依赖于通常限制在单个波长内的evanevanscent场。扩展evanscent耦合距离需要低折射率对比度和完美的动量匹配,以实现较大的耦合比。在这里,我们报告了在拓扑山谷大厅对波导中发现光子超耦合的发现,显示了多个波长的耦合效率的显着提高。在实验上,我们通过电磁能的涡流涡流流进行了波导之间的超高耦合比,达到了95%的耦合效率,以分离多达三个波长。拓扑系统中光子超耦合的演示显着扩大了片上波导和组件之间的耦合距离,为开发超耦合光子光子积分设备的发展铺平了路径,光学传感和电信。
在连续状态中的新结合和在一个光子三角形的pyra-mid中具有两个半实用铅的长期共振,并据报道,一般定理给出了它们的存在条件。金字塔由连接的开环(长度为l)组成。当连续状态存在于状态连续图内时,它们会引起长寿的共振,以构成金字塔的6个开放环的某些修改长度的特定值。这15个使这些长度通过这些长度来调节这些共振。这项工作中获得的结果适当说明了最终系统之间的状态数量保存以及由独立金字塔和半限制铅所构成的参考。这种保护的尊重使得能够找到最终系统的所有状态,其中包括连续体的界限。这是这项工作的原始性之一。另一个新的一般结果20是连续状态和长寿共振的不同束缚集,以及给出其存在条件的定理。这些结果可能会对连续状态,长期共鸣和通信技术改进的界限的一般研究产生重大影响。
