关键词:可编程光子集成电路、相位恢复、稳健表征 摘要:光子集成电路 (PIC) 提供超宽光学带宽,可为信号处理应用提供前所未有的数据吞吐量。动态可重构性可以补偿制造缺陷和波动的外部环境,调整自适应均衡和训练光学神经网络。PIC 重构的初始步骤需要测量其动态性能,通常由其频率响应描述。虽然测量幅度响应很简单,例如使用可调激光器和光功率计,但由于各种因素(包括测试连接中的相位变化和仪器限制),测量相位响应存在挑战。为了应对这些挑战,提出了一种通用且稳健的表征技术,该技术使用耦合到信号处理核心 (SPC) 的片上参考路径,其延迟大于或小于信号处理路径上的总延迟。芯片功率响应的傅里叶变换揭示了 SPC 的脉冲响应。该方法对低参考路径功率和不精确的延迟更具鲁棒性。使用有限脉冲响应 (FIR) 结构的实验证明了快速 SPC 训练,克服了热串扰和设备缺陷。这种方法为 PIC 特性提供了一种有前途的解决方案,有助于加快物理参数训练,以用于通信和光学神经网络中的高级应用。
各机构将保留您的发言权。这包括演讲以及讲师的视频和声音。参与者的视频将不属于录音的一部分,所有参与者在进入会议时都将静音。请注意,在讲座期间提问时,您可能会被录音。如果您对此感到不舒服,请使用聊天或在讲座的讨论部分提出您的问题,在此期间录音将被关闭。要提问,请使用“举手”(“Hand heben”)按钮举手。
Antonia Gambacorta 1 , Jeffrey Piepmeier 1 , Mark Stephen 1 , Rachael Kroodsma 1 , Isaac Moradi 3 , Alexander Kotsakis 3 , Fabrizio Gambini 2 , Matt Fritts 1 , James Mackinnon 1 , Joseph Santanello 1 , John Blaisdell 4 , Robert Rosenberg 4 , Narges Shahroudi 3 , Yaping Zhou 2 , Priscilla Mohammed 7 , Victor Torres 1 , Dan Sullivan 1 , Ed Leong 1 , David Robles 1 , Jie Gong 1 , Ian Adams 1 , Paul Racette 1
在这项工作中,我们建立了有限的两维光子结构的批量边缘对应原理。特别是,我们专注于具有周期性系数的发散形式运算符,并证明了众所周知的Gap Chern Number(散装不变性)和通过痕量公式定义的,用于将操作员限制在具有Dirichlet边界条件的限制域的轨迹公式。我们证明了边缘指数表征电磁沿系统边界的循环,而BEC原理是能量保护的结果。证明利用绿色功能技术,这些技术放松了基础结构上的平滑性要求,并且可以扩展到其他系统。这些结果为使用有限的几何形状设计可靠的拓扑光子设备提供了严格的理论基础,从而补充了离散模型的最新进步。
光子集成电路 (PIC) 长期以来一直被视为彻底改变光学的颠覆性平台。在成熟的电子集成电路制造工业代工厂基础设施的基础上,PIC 的制造取得了显著进展。然而,由于 PIC 的光学对准公差严格,因此需要专用封装仪器,因此 PIC 的封装往往成为阻碍其可扩展部署的主要障碍。双光子光刻 (TPL) 是一种具有深亚波长分辨率的激光直写三维 (3-D) 图案化技术,已成为集成光子封装的一种有前途的解决方案。本研究概述了该技术,强调了 TPL 封装方案的最新进展及其在主流光子行业中的应用前景。
电场的纵向成分是e z = ∑ ae ikrቀxcos 2nπn + ysin 2nπnπe-k e -k z z z z n n = 1,带有
左侧的括号中的术语等于零,作为波导中不受干扰的波方程的解决方案。然后取消双方的多个术语,集成并像以前一样引入有效的索引eff n和二阶敏感性eff d,最后进行复杂的共轭
从BCP中自我组装了多种光子架构,范围从远程有序结构(例如,紧密包装的胶束,[4]六角形圆柱体,[5] Double Diamond,[6] [6]甲状腺,[7] gyroids,[7] [7] [7]立方体和相关的网络[8],例如phots Systems,以及玻璃,以及玻璃,以及玻璃,以及范围的距离,又有效果,又是镜头。[9]然而,在过去的二十年中,大多数研究集中在线性和刷子块共聚物(分别是LBCP和BBCP)中的层状结构上,如图1所示。此纳米结构很喜欢,因为它既简单又能作为一维光子多层层,它提供了最佳的光学性能(即来自最小尺寸的最大反射率)。虽然先前的评论总结了制造策略和基准的光学性能,但[2,10]从所采用的聚合物库的角度来看,该领域中没有概述。从这个角度来看,我们对光子多层膜和粒子的归类和系统分析,并通过从材料角度强调当前的挑战和局限性,我们
光子过程位于气候变化的核心:地球的温度升高从根本上是由于阳光吸收和辐射辐射发射之间的辐射通量平衡的改变,这是由于CO 2和其他温室气体的升高,如图1A所示。每天,我们通过使用多种能源形式(电力,热量,燃料)来支持制造我们的商品,创造和控制我们的建筑环境,维持我们的粮食生产并运输这一切(图1b)的复杂工业过程,从而释放出大量的CO 2。我们需要所有这些领域的戏剧性技术变化,以减少CO 2的产生并避免进一步的全球变暖。光子概念和新颖的轻度驱动技术在减轻CO 2排放中起着核心作用,并将我们当前的能源使用方式转变为更有效,更可持续的方法。
在本文中,我们讨论了3个示例,其中微透镜可以成为解决光纤阵列和光子积分电路(PIC)之间耦合挑战的有用工具。这项工作中使用的(阵列)通过光孔反射方法实现了(可以单层集成在PIC的背面,或者可以单独地集成在PIC的后侧,或者可以在PIC的设备侧安装。第一个示例涉及在感应图片的背面蚀刻的硅微透镜(在C波段中运行),目的是用于放松的对齐公差,并使设备侧没有接口纤维。第二个示例涉及实施4毫米长的工作距离扩展的梁(30 µm模式场直径,C型波段)界面,用于电信/数据量应用程序,该应用程序也极大地放松了PIC上的GRATINAL耦合器和A纤维阵列之间的横向和纵向对齐公差。最终示例涉及在这个长的工作距离扩展的梁界面中的隔离器的集成。隔离器堆栈由偏振器(0.55 mm厚),非重生法拉第旋转器(485 µm厚的薄膜闩锁Faraday旋转器)和半波板(HWP,91 µm石英)组成。我们获得了宽带操作,表现出非常低的(1至1.5 dB之间)的插入损失和良好的灭绝比(17至20 dB之间)C波段(约1550 nm)