工程生物材料 (ELM) 是一类新型功能材料,其特点是将生物成分在惰性聚合物基质内进行空间限制,以重现生物功能。了解基质内细胞群的生长和空间配置对于预测和改善其响应潜力和功能至关重要。本文研究了真核微藻莱茵衣藻 (C. reinhardtii) 在三维形状的水凝胶中的生长、空间分布和光合生产力,这些生长、空间分布和光合生产力取决于几何形状和尺寸。嵌入的莱茵衣藻细胞进行光合作用并形成受限的细胞簇,由于有利的气体交换和光照条件,当细胞簇靠近 ELM 外围时,它们生长得更快。利用位置特定的生长模式,这项研究成功设计和打印了具有更高 CO 2 捕获率的光合 ELM,具有高表面积体积比。这种控制细胞生长以提高 ELM 生产力的策略类似于多细胞植物叶片中已经建立的适应性。
太阳陈1,2,3,玛塔·霍卡4,菲利普·戴维5,Yaqi Sun 2,Fei Zhou 3,Tracy Lawson 5,Peter J. Nixon 4,Yongjun Lin 3,lu-niw Liu 2,6 * 1 Guangdong guangdong guangdong guangdong省级利用和药物保存和北部北部的省级北部。 512000,中国2分子与综合生物学研究所,利物浦大学,利物浦大学,利物浦L69 7ZB,英国3号国家遗传改善的国家主要实验室和国家植物基因研究中心,瓦兹胡农农业大学,武汉,瓦汉430070,430070,430070 2AZ,英国5日生命科学学院,埃塞克斯大学,科尔切斯特CO4 4SQ,英国6海洋生命科学学院和中国海洋深海洋多球和地球系统的边境科学中心,中国海洋大学266003,中国 *通讯 *通信:luning.luning.luiu@luning@liverpool.ac.ac.ac.uk(l.-n.-n.l.-n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l>摘要尽管Rubisco是全球最丰富的酶,但由于其营业率低和区分CO 2和O 2的能力有限,碳固定效率低下,尤其是在高O 2条件下。为了解决这些局限性,包括蓝细菌和藻类在内的浮游植物已经进化了CO 2浓缩机制(CCM),这些机制涉及在特定结构内将Rubisco划分的rubisco,例如在藻类或藻类中的cyanobacteria或Pyrenacoids中的羧基助理。工程植物的叶绿体建立了类似的结构来分隔Rubisco,这引起了人们对改善作物植物中光合作用和碳同化的兴趣。在这里,我们提出了一种方法,可以通过遗传融合的超纤维纤维构成超级纤维绿色荧光蛋白(SFGFP)在烟草中有效地诱导内源性rubisco的凝结(Nicotiana tabacum)叶绿体。通过利用SFGFP的固有寡聚特征,我们成功地创建了类似pyrenoid的Rubisco冷凝物,这些冷凝物在叶绿体中显示动态的,类似液体的特性,而不会影响Rubisco组装和催化功能。转基因烟草植物与野生型植物相比表现出可比的自养生长速率和环境空气中的完整生命周期。我们的研究提供了一种有希望的策略,可以通过相分离调节植物叶绿体中的内源性Rubisco组装和空间组织,这为生成合成细胞器样结构的基础为碳固定的碳固定结构(例如羧化合物和吡啶样),以优化光合效率。关键字:Rubisco;碳固定;光合作用;叶绿体工程;相位分离;蛋白质冷凝;植物生物技术
摘要:超分子表面活性剂为构造太阳能燃料合成系统的多功能平台,例如,通过将两亲光感应器和催化剂的自组装成各种超分子结构。然而,在太阳能燃料生产中对两亲光的光敏剂的利用主要集中在产生气态产物上,例如分子氢(H 2),一氧化碳(CO)和甲烷(CH 4),而甲烷(CH 4)的合成催化剂(TON)的合成催化剂属于合成催化剂,通常是在数百万范围内的合成催化剂。受到生物脂质 - 蛋白质相互作用的启发,我们在此提出了一种新型的生物杂交组装策略,该策略利用光敏剂作为表面活性剂形成胶束支架,该胶束支架与酶(即氢化酶),即半人工光合作用。具体而言,具有[ruthenium tris(2,2'-二吡啶)] 2+头组与酶相关时具有高光催化活性的表面活性剂,因为它们具有阳性带电的[RU] 2+中心的静电相互作用,可以与酶相互作用,以与酶相互作用,以使胶束上的电子转移在胶束eNzeme-Enzyzyzyzyzeme-Enzyzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme界面相互作用。时间分辨的吸收和发射
摘要:光氧化还原催化通常依赖于单个发色团的使用,而将两种不同的光吸收剂结合起来的策略很少见。在绿色植物的光系统 I 和 II 中,两个独立的发色团 P 680 和 P 700 都独立地吸收光,然后它们的激发能量以所谓的 Z 方案结合,从而驱动一个热力学上非常苛刻的整体反应。在这里,我们采用这一概念对有机底物进行光氧化还原反应,其中组合能量输入是两个红光子而不是蓝光或紫外光。具体而言,在过量二异丙基乙胺存在下,Cu I 双(α-二亚胺)复合物与原位形成的 9,10-二氰基蒽基自由基阴离子结合可催化约 50 个脱卤和脱甲磺酰反应。这种双光氧化还原方法似乎很有用,因为红光的破坏性较小,而且穿透深度比蓝光或紫外线辐射更大。紫外-可见瞬态吸收光谱表明,溶剂从乙腈到丙酮的细微变化会引起反应机制的转变,涉及占主导地位的光诱导电子转移或占主导地位的三重态-三重态能量转移途径。我们的研究说明了在多光子激发条件下运行的系统的机械复杂性,并提供了有关如何使所需和不需要的反应步骤之间的竞争变得更可控的见解。关键词:光催化、光谱、机械分析、电子转移、能量转移■简介
红色珊瑚藻在整个沿海海洋中创造出丰富的,巨大的礁石生态系统,并提供了大量的生态系统服务提供,但是我们对它们的基本生理学的理解缺乏。尤其是,产生碳和碳序列过程之间的平衡和联系仍然受到限制,这对了解它们在碳固存和存储中的作用具有重要意义。使用双放射性同位素跟踪,我们提供了在红色珊瑚藻(Red Coralline Alga Boreolithamnion Soriferum)(以前是Lithothamnion Soriferum)中的光合作用(需要CO 2)和钙化(需要CO 2)之间耦合的证据。通过光合作用将39±14%纳入了有机物。只有38±2%的隔离HCO 3-转化为CO 2,其中几乎40%的内部回收为光合基质,将碳的净释放降低至总吸收量的23±3%。钙化速率在很大程度上取决于光合底物的产生,从而支持光合增强的钙化。此处报道的有效的碳复合生理学表明,钙化藻类可能对海洋CO 2的释放贡献不如当前假设的贡献太大,从而支持其在蓝色碳核算中的作用。
Xiaolong Chen 1,Joshua M. Lawrence 2,Laura T. Wey 2,Lukas Schertel 1,Qingshen Jing 3,Silvia Vignolini 1,Christopher J. Howe 2,Sohini Kar-Narayan 3,Jenny Z.
众所周知,植物激素的生长素和细胞分裂素是植物生长和发育的关键调节剂,它们是在芽和根,幼叶,种子,种子和水果的顶端分生组织中合成的[1-4]。它们对种子发芽,芽的形成和生长以及植物阶段的植物的不定和侧根表现出刺激的影响[1-4]。植物生物学家的大量关注致力于筛选合成起源的生长素和细胞分裂素的新有效类似物,以改善农业的生长并提高农作物的生产率。近年来,已经创建了新的生长素和细胞分裂素的新合成类似物,例如NAA(1-萘乙酸),2,4-D(2,4-二氯苯氧基酸),3,4-D(3,4-二氯苯甲乙酸),2,4,4,4,5-T
摘要:叶绿体是通过蓝藻类共生体与宿主内共生进化而来的光合细胞器。许多研究试图分离完整的叶绿体来分析其形态特征和光合活性。尽管一些研究将分离的叶绿体引入不同物种的细胞中,但其光合活性尚未得到证实。在本研究中,我们从原始红藻 Cyanidioschyzon merolae 中分离了具有光合活性的叶绿体,并通过共培养将其整合到培养的哺乳动物细胞中。整合的叶绿体保留了其细胞内囊体的结构,并保持在细胞质中,被细胞核附近的线粒体包围。此外,整合的叶绿体在整合后至少 2 天内在培养的哺乳动物细胞中保持光系统 II 的电子传递活性。我们的自上而下的基于合成生物学的方法可以作为创造人工光合动物细胞的基础。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年1月24日发布。 https://doi.org/10.1101/2025.01.21.634093 doi:biorxiv preprint
1个生物系统学集团,瓦格宁根大学,Drovendaalsesteeg 1,6708pb Wageningen,荷兰2遗传学,生物技术与种子科学实验室(GBIOS),Abomey-Calavi,BP 2549 Abome-Calavi,Scalavi,Scalavi,Scalavi,Scalavi,Scalavi,Scalavi,Scalavi of Recuntion of Remonic Sciences,Agronomic Sciulty of Agronomic Sciulty剑桥,剑桥CB2 CB2 3EA,英国4个生物研究中心,海德堡大学,69120 Heidelberg,德国海德堡,德国Heidelberg,5遗传学实验室,瓦格宁根大学和研究,Droevendaalsesteeg 1,6708pb 6708pb Wageningen,荷兰6号纽约市6号纽约市7. 77 ISTRAING ISTRAINT INSUITIN,TEX ISTIN 7. Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China 8 Faculty of Biology, Bielefeld University, 33501 Bielefeld, Germany 9 Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany 10 Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands 11 African Orphan Crops Consortium (AOCC), World Agroforestry (ICRAF), Nairobi 00100, Kenya 12 Seed Biotechnology Center, University of California, Davis, California 95616,美国