初级生产力是指生产者光合作用和化学合成活动储存辐射能的速率;它进一步分为总初级生产力 (GPP) 和净初级生产力 (NPP)。它以重量 (g/m2/yr) 或能量 (kcal/m2) 表示。次级生产力是指消费者层面的能量储存率。了解生态学对于现代工业化社会的管理至关重要,管理方式要与环境保护和改善环境相兼容。生态学的一个分支是应用生态学,它涉及预测技术和发展的影响并提出建议,以使这些活动对生态系统产生最小的不利影响,甚至产生积极影响。这是一种多学科方法。
枫em.1 aquamagic是液体浓缩物。它是使用从自然环境中收集的许多微生物菌株的科学程序来产生的。主要的微生物是乳酸菌,酵母和光合细菌。Maple EM.1 aquamagic包括有氧和厌氧物种的微生物。微生物不是基因工程的,而是在局部生产的。EM技术。在印度,锡金,米佐拉姆邦和阿鲁纳恰尔邦的州政府已通过农业,畜牧业等的可持续用途,枫树EM.1 Aquamagic&Animal Bokashi可用于可持续发展渔业。
picochlorum,是微藻生物学的新兴模型。是绿藻进化枝(Trebouxiophyceae)的成员,并于2004年发现,P。senew3的基因组于2014年首次出版,发现是在真核生物中最小的(13MB)和最小的基因密集(7k基因)之一,在真核生物中(Henley等人)(Henley等人(Henley等)(Henley等人)(Henley等人,2004年; 2004年; fofllonke an an an al an an al an al an an an an an al al an an an an an al al an an an al an an an an an an an an an an。picochlorum非常耐受性,并且具有快速的增长率,使其成为了解气候变化和病毒感染的良好候选者。尽管具有工业潜力,但其光合作用反应和新陈代谢仍未清楚。此外,地中海沿海泻湖中越来越多的皮克洛鲁姆盛开量是牡蛎养殖(THAU)的环境问题,从而损害了牡蛎的生长,无法消耗小藻类。因此,了解picochlorum种群在本质上,尤其是病毒的调节是一般的重要性。在Biam和Mio Labs之间的新兴合作中,该项目的假设(已经由AMU Transivir 2022-2025项目资助),我们已经与Berre Lagoon隔离并测序了一个Picochlorum,并将其测序为“ Pico A”。我们还隔离了在PICO A中复制的各种巨型病毒,这些病毒的一部分具有基因组,其中包含两个非常古老的辅助代谢基因(AMG)。巨型病毒在这些酶中可以使用什么使用?它们是否在感染过程中调节宿主细胞代谢以提高复制效率?使受感染的宿主在人群中更具竞争力?picochlorum sp。这些基因代码对于血红素氧化酶(HMOX)和植物苯胺蛋白:铁毒素氧化还原酶(PCYA)一种在藻类叶绿体中产生色素具有重要调节功能的途径:具有重要调节功能:叶绿素合成的叶绿素(Zhang et al。稳定光系统I(Wittkopp等,2017)。我们博士项目的主要目的是将分子生物学和遗传学方案调整为PICO A,目的是通过操纵HMOX和PCYA来了解巨型病毒 - 微藻相互作用。博士学位候选人还将尝试使用工程化的CRISPR/CAS9 PICO A作为底盘,以在感染期间设计我们的巨型病毒(Noel等,2021; Bisio等,2023)。由于其对温度和盐度的耐药性高以及前所未有的2小时双倍时间,作为可再生生物量的来源,人们获得了越来越多的兴趣。但是,它的光合作用和异养代谢几乎完全没有表征,并将提供理解其适应性的关键之一。因此,我们在该项目中的支持目的是对电子流,光保护途径和二氧化碳摄取机制进行完整的光合特征,并评估其在还原碳源上生长的能力。共同服务员
美国宇航局的 PACE 卫星的海洋颜色仪 (OCI) 可探测高光谱范围内的光,这为科学家提供了区分浮游植物群落的新信息——这是美国宇航局最新的地球观测卫星的独特能力。OCI 发布的第一张图像于 2024 年 2 月 28 日在南非沿海的海洋中识别出两种不同的微小海洋生物群落。该图像的中央面板显示粉红色的聚球藻和绿色的微型真核生物。该图像的左侧面板显示了海洋的自然色视图,右侧面板显示了叶绿素 a 的浓度,叶绿素 a 是一种用于识别浮游植物存在的光合色素。图片来源:NASA
随着世界人口的快速增长和自然资源的日益减少,我们现在面临着巨大的挑战,既要提高作物产量,又要提高资源利用效率。将 C4 光合作用引入 C3 作物被广泛认为是应对这一挑战的关键策略,因为 C4 植物在光合作用和资源利用方面比 C3 植物更有效率,特别是在生产力潜力巨大的炎热气候下。有证据表明,C4 光合作用是在多个谱系中从 C3 光合作用进化而来的,这为这种 C3 到 C4 工程的可行性提供了支持。然而,C3 到 C4 工程并非易事,因为必须将 C4 光合作用所必需的几个特征引入 C3 植物。其中一个特征是光合作用的两个阶段(CO 2 固定和碳水化合物合成)在空间上分别分离到叶肉细胞和束鞘细胞中。另一个特征是克兰兹解剖结构,其特点是叶肉细胞和束鞘 (BS) 细胞之间紧密相关(比例为 1:1)。这些解剖学特征与 C4 特异性碳固定酶 (PEPC) 一起形成了一种 CO 2 浓缩机制,可确保较高的光合作用效率。过去人们付出了很多努力将 C4 机制引入 C3 植物,但这些尝试都没有成功,我认为这是由于缺乏对 C3 和 C4 途径的系统级理解和操纵。作为 C3 到 C4 工程的先决条件,我建议不仅必须阐明控制 C3 和 C4 植物中 Kranz 解剖学和细胞类型特异性表达的机制,还必须充分了解 C3 和 C4 光合作用背后的基因调控网络。在这篇评论中,我首先描述了过去和当前为提高 C3 植物的光合作用效率所做的努力及其局限性;然后,我讨论了应对这一挑战的系统方法、一些实际问题以及有助于我们解决这些问题的最新技术创新。
微藻生产的生物燃料和其他商品商业化的主要瓶颈是光养培养的高成本。提高微藻生产力可能是解决这个问题的办法。合成生物学方法最近已用于设计几种微藻菌株的下游生产途径。然而,在微藻中,设计上游光合作用和碳固定代谢以增强生长、生产力和产量的尝试很少。我们描述了改进从光中产生还原能的策略,以及改进通过天然卡尔文循环或合成替代品吸收二氧化碳的策略。总体而言,我们乐观地认为,最近的技术进步将推动微藻研究取得期待已久的突破。
本研究的作者是美国国家科学基金会 (NSF) 资助项目的一部分,该项目将 ELM 定义为封装在聚合物基质内的工程活细胞的复合材料。我们的跨学科研究团队由化学家、生物化学家、生物工程师、机械工程师和建筑师组成,他们为建筑环境开发 ELM,其中包括具有不同功能的工程活细胞的 3D 可打印树脂。我们实验室研究的重点是围绕创新 ELM 的三个主要问题:(1) 在不断变化的水合水平(室外环境)中茁壮成长的能力以及在低水合水平期间生存的能力,(2) 将具有光合作用活性、生产性的细胞整合到高科技建筑膜中,以及 (3) 创建 ELM 簇作为生物生产的弹性生物反应器。
摘要蓝细菌是光合作用的原核生物,近年来因其潜在的健康益处而引起了人们的关注。蓝细菌的一种显着特性是它们的高抗氧化能力,这归因于各种有益特性。抗氧化剂在人体中至关重要,因为它们有助于清除会导致细胞损害并导致疾病的自由基。使用蓝细菌和其他微生物的食物发酵已有几个世纪以来一直是一种传统的实践,并且已被发现增强了食物的抗氧化能力。本评论的论文旨在探讨蓝细菌在解锁发酵食品和食品微生物的抗氧化潜力方面的潜力。同时讨论了蓝细菌衍生的抗氧化剂的作用机理以及食用含有蓝细菌的发酵食品的潜在健康益处。
微藻是微观群体的一部分,是光合和多方面的分类单元,被称为微藻。它们具有独特的特性,使它们能够在非常规的空间中繁荣发展,并使其适合通常不适合文化增长的领域。这是由于它们能够快速繁殖的能力,很少努力地适应不同的环境(Odjadjare等,2017; Wang等,2014)。除了吸收阳光和二氧化碳外,微藻还消耗了土壤或水生栖息地的营养,它们也是Mosphere中氧气的重要来源(Rizwan等,2018)。微藻不仅有助于通过将二氧化碳转化为生物量来减少温室气体的排放,而且还具有巨大的生物技术潜力。碳水化合物,蛋白质
对人类最突出的威胁之一是全球变暖。当前的全球二氧化碳(CO 2)从化石燃料使用中的散发物保持过多,并且光合作用CO 2同化的自然能力继续被淘汰。1 - 5因此,CO 2利用的前景不仅有助于实现更可耐受的大气CO 2水平,而且还将提供足够大的碳源,以替代化石碳源。在此寻求访问CO 2作为碳源的追求中,至关重要的是,我们从自然中获得灵感。在过去的十年中,合成生物学的ELD进行了积极的发展,其尖端技术旨在将生物催化的CO 2排放量转化为高增值化学产品,例如甲酸(HCOOH)。6,7甲酸可以进一步转化为高价值化学物质。8,9
