除了对海洋碳循环和食物网至关重要之外,海洋微藻目前还被用于不同的用途,包括功能性食品。这些光合微生物产生高质量的蛋白质、脂质和碳水化合物,是人类营养丰富的食物来源。例如,它们的蛋白质和脂质含有我们饮食中必需的氨基酸和多不饱和脂肪酸 (omega-3)。就碳水化合物而言,据报道它们具有抗病毒和抗炎特性。意识到这些营养特性后,科学家们专注于开发功能性食品和技术。因此,本期特刊旨在为微藻功能性食品的开发和评估做出贡献。我们向不同领域的研究人员发出邀请,包括但不限于新菌株的培养和营养成分、生物质和细胞外分子的分离和纯化以及食品的配方和特性。
单元1:可再生能源和替代燃料(信用1)环境生物技术简介;可再生资源及其分类;生物燃料 - 定义,收益和前景;使用甲烷基细菌生产沼气;微生物氢气产生;乙醇生产及其用作燃料,例如。gasohol;可燃燃料的纤维素降解;光合色素作为太阳能转换器;基于植物的石油行业。单元2生物肥料和生物修复(信用2)生物肥料:固定固定微生物,用可合同的氮富含土壤;磷酸盐溶解剂; vermicompost;促进生物修复和植物修复的植物生长;生物含量:微生物富集矿石;荒原回收异生物降解 - 农药降解,除草剂降解等通过微生物;生物农药,苏云金毒素作为天然农药,BT植物等
识别和对细胞能量调节机制的操纵可能是提高光合生物生产率的策略。这项工作检验了以下假设:通过以ATP形式将能量储存或消散能量在能量管理中起作用。在蓝细菌合成细胞群Sp中产生了无法合成多磷酸盐的多磷酸激酶(PPK)敲除菌株。PCC 6803。在高碳条件下,这种突变菌株比野生型菌株表现出更高的ATP水平和更快的生长,并且在多种应力条件下具有生长缺陷。在将PPK缺失与乙烯形成酶异源表达结合的菌株中,观察到比野生型背景相比,观察到较高的乙烯生产率。这些结果支持多磷酸合成和降解作为能量调节机制的作用,并表明这种机制可能是生物培养设计中的有效靶标。
在面对生物压力的情况下为自己辩护,植物采用了复杂的免疫系统,需要协调其他生物学和代谢途径。光吸收,这是跨多个细胞室并连接主要代谢的氧合光合作用的副产品途径,在防御反应中起着重要作用。过氧化氢的稳态受到光刺的强烈影响,是植物免疫中至关重要的信号分子。光呼吸代谢物,光刺激与防御激素生物合成之间的相互作用以及其他机制也涉及。对植物免疫力和光振动性之间关系的改进理解可能为作物工程提供急需的知识基础,以最大化光合作用,而没有植物免疫的负面折衷,尤其是因为光呼吸途径已成为基因工程的主要目标,其目标是提高光合作用的目标。
植物学,也称为算法是藻类的科学研究。这是生命科学的一个分支,通常被视为植物学的子学科。藻类被认为是水生生态系统中重要的主要生产者。微量藻类是地球大部分氧气的来源。藻类在生态上也非常重要,因为它们是其他动物的食物链的开始。大多数藻类都是生活在潮湿环境中的真核,光合生物。真菌学是与真菌研究有关的生物学分支,包括它们的遗传和生化特性,分类法及其对人类的用途,作为火种,药物,食物和诱因的来源,以及它们的危险,例如毒性或感染。专门从事真菌学的生物学家称为真菌学家。真菌学分支进入植物病理学领域,即植物疾病的研究,这两个学科仍然密切相关,因为绝大多数植物病原体都是真菌。
叶绿素:叶绿素是一种光合色素,存在于几乎所有植物和浮游植物中。通过测量水样中叶绿素“a”的含量,可以确定水中的藻类数量。与叶绿素 a 一起测量的其他光合色素还有叶绿素 b、叶绿素 c 和胡萝卜素。它们的颜色各不相同,在植物和浮游植物物种中的含量也不同。云量:云量测量是在现场近似的,记录范围从零云量(无云)到 100% 云量(完全阴天)。云量会影响叶绿素的产生、塞氏深度测量和气温。颜色:颜色是采样水的色调,通过主观测试确定,该测试涉及将样品与已知浓度的有色溶液进行比较。天然金属离子(铁和锰)、腐殖质和泥炭物质、浮游生物、单宁和工业废物会影响水体的颜色。浊度也会影响颜色。溶解氧:溶解氧 (DO) 是水中的气态氧 (O 2 )。水吸收氧气的速率取决于温度、盐度、大气压和风速。低温、低盐度和低海拔是吸收更多氧气的理想因素。在不存在氧气或鱼类种群、细菌含量高甚至存在污染的泉水中,溶解氧可能接近 0 mg/L,而在风引起的高通量曝气以及光合作用过程中水生植物产量高(如藻类大量繁殖)的情况下,溶解氧可能高达 15 mg/L。溶解氧可以间接表示水体的质量。肠球菌:肠球菌是一种指示生物,其存在决定了水质的恶化。肠球菌是粪便链球菌的一个亚群。肠球菌对各种温度和 pH 的抵抗力使其成为实验室水样分析的理想高效细菌。
地球上的地下环境可以作为研究其他星球上微生物的模拟,这已成为一个活跃的研究领域。虽然光合蓝藻在极低光照环境中茁壮成长听起来可能有些矛盾,但它们却是地球洞穴中的常见居民。在整个门类中,这些蓝藻都发展出了独特的适应能力,不仅可用于生物技术过程,而且对天体生物学也有影响。例如,它们既可以通过产生允许在近红外 (IR) 辐射/远红光中进行光合作用的特定色素来适应低光照条件,也可以合成生物塑料化合物和碳酸钙鞘,这些是人类在其他星球或岩石体上殖民期间的宝贵资源。本文将重点介绍洞穴栖息蓝藻的潜在好处,并将介绍一种合适的生物反应器技术,以便在未来的太空任务中利用这些特殊的微生物。
(2023)。促进根瘤菌接种的24-纤维氨基酚和植物生长的互动效应恢复了胸腺毒性毒性下的胸前的光合属性。环境污染。320,120760。(doi:https://doi.org/10.1016/j.envpol.2022.120760)。如果。9.988。11。Vijay Rani Rajpal,Suman Sharma,Deepmala Sehgal,Prashansa Sharma,Nikita Wadhwa,Priyanka Dhakate,Atika Chandra,Rakesh Kr thakur,Sohini Deb,Sohini Deb,Satyawada Rama Rao Rao,Bilal Rao,Bilal Ahmad Ahmad Mir,Mir,Mir,Mir,Soom noa。(2023)。在变得无私的旅程中理解B染色体的活力。细胞和发育生物学领域的前沿。10:1072716。(doi:10.3389/fcell.2022.1072716)。如果。6.08。12。Diptaraj Chaudhari,Shashi Kiran,Ashish Choudhary,Kris Silveira,Nitin Narwade,Dhiraj Dhotre,Jabeena Khazir,Bilal Ahmad
抽象的微生物燃料电池和生物光伏系统(BPV)相似,因为它们使用阳极和氧气光合细菌来产生由光触发的细胞外电流。在过去的几十年中,接线方案和多代电极开发的进步有助于在BPV的研究和应用中取得重大进步。有报道称,功率密度高达0.5 w m -2,可以为小型电气设备(如数字时钟)提供动力。由于标准化的进步,可以进一步利用Bio Photelectroectro化学现象来回答有关生物体的生物学问题。强调生物材料,电极设计和界面布线问题,我们希望为生物学家和电化学家提供全面的BPV演变概述,并建议该地区的未来方向。关键词:BPV-生物植物,微生物,真核微藻类,蓝细菌。
