摘要:本研究旨在利用多视图时空分层深度学习方法,探索使用脑机接口的脑电信号解码人类大脑活动。在本研究中,我们探索了将一维时间脑电信号转换为二维时空脑电图像序列,并探索了在提出的多视图分层深度学习方案中使用二维时空脑电图像序列进行识别。对于这项工作,使用了 PhysioNet 脑电运动/图像数据集。所提出的模型在分层结构中使用 Conv2D 层,其中每个级别都使用前一级别的决策单独做出决策。该方法用于学习数据中的时空模式。与二元分类范式中最先进的脑电运动意象分类模型相比,所提出的模型实现了具有竞争力的性能。对于二元想象左拳与想象右拳分类,我们能够实现 82.79% 的平均验证准确率。在多个测试数据集上达到这种水平的验证准确率证明了所提模型的稳健性。同时,由于使用了多层和多视角方法,模型明显显示出改进。
运动伪影降低了脑电图(EEG)信号中信息质量。在这项研究中,我们开发了一种有效的方法来通过使用经验小波变换(EWT)技术来减轻脑电图信号中的运动伪像。首先,我们将EEG信号分解为称为固有模式函数(IMFS)的窄带信号。这些IMF进一步处理以抑制工件。在我们的第一种方法中,主成分分析(PCA)用于抑制这些分解的IMF中的噪声。在第二种方法中,使用方差度量识别具有嘈杂成分的IMF,然后将其删除以获得伪影抑制的脑电图信号。我们的实验是在EEG信号的公开生理学数据集上进行的,以证明我们方法在抑制运动伪像的有效性。更重要的是,基于IMF的基于IMF的方法比基于EWT-PCA的方法提供了明显更好的性能。此外,基于IMF的方法的方法比基于EWT-PCA的方法更有效。我们提出的基于IMF变量的方法达到了28.26 dB的平均信号与噪声比(𝛥 snR),并超过了用于移动伪像的现有方法。
摘要 - 这项工作是从Phonocartiogram(PCG)录音中自动且准确的心脏模拟检测。Two public PCG datasets (CirCor Digiscope 2022 dataset and PCG 2016 dataset) from Physionet online database are utilized to train and test three custom neural networks (NN): a 1D convolutional neural network (CNN), a long short-term memory (LSTM) recurrent neural network (RNN), and a convolutional RNN (C- RNN).我们首先进行预处理,其中包括以下关键步骤:使用小波散射变换对PCG段的DeNoising,分割,仅噪声段重新标记,数据归一化以及PCG段的时间频率分析。然后,我们使用PCG 2022数据集进行了四个实验,前三个(E1-E3),使用PCG 2016数据集进行了第四个实验。事实证明,我们的自定义1D-CNN优于其他两个NN(LSTMRNN和C-RNN)。此外,对于实验E3,我们的1D-CNN模型就准确性,加权准确性,F1得分和AUROC而优于相关工作(使用清洁和重新标记的PCG 2022数据集)。对于实验E1(使用原始PCG 2022数据集),我们的模型在加权准确性和F1分数方面非常接近相关工作。
心血管疾病目前是全球死亡的主要原因。在预防心血管问题的策略中,心脏声音异常的自动分类是检测心脏病或其他无症状(甚至无症状的并发症)早期迹象的有效方法,对于及时的干预措施非常有效。尽管该领域有显着改善,但由于缺乏解决方案,可用的数据集和差(主要是二进制 - 正常与异常)分类模型和算法,仍然存在局限性。本文及时提出了一种医学网络物理系统(MCP),以自动对心脏瓣膜疾病进行自动分类。实际上,拟议的MCP可以通过一种高效易于访问的工具来部署到个人和移动设备中,以解决对患者,医疗保健从业人员和研究人员的现有解决方案的局限性。它结合了在新的意大利数据集中训练的不同的神经网络模型,该模型涉及132名成年患者,涵盖了9个心脏声音类别(1个正常和8个异常),也针对两个主要的开放式访问(Physionet/Cinc Challence 2016和韩语)数据集进行了验证。总体MCPS性能(时间,处理和能源资源利用率)和模型的高精度(高达98%)证明了提出的解决方案的可行性,即使数据很少。可应要求提供支持本文发现的数据集。
摘要 — 本文介绍了一种准确而强大的嵌入式运动想象脑机接口 (MI-BCI)。所提出的新模型基于 EEGNet [1],可满足 ARM Cortex-M 系列等低功耗微控制器单元 (MCU) 的内存占用和计算资源要求。此外,本文还提出了一组方法,包括时间下采样、通道选择和缩小分类窗口,以进一步缩小模型以放宽内存要求,同时几乎不影响准确度。在 Physionet EEG 运动/图像数据集上的实验结果表明,标准 EEGNet 在全局验证中对 2 类、3 类和 4 类 MI 任务的分类准确率分别为 82.43%、75.07% 和 65.07%,比最先进的 (SoA) 卷积神经网络 (CNN) 分别高出 2.05%、5.25% 和 6.49%。我们的新方法进一步缩小了标准 EEGNet,精度损失为 0.31%,内存占用减少了 7.6 倍,精度损失为 2.51%,减少了 15 倍。缩放后的模型部署在商用 Cortex-M4F MCU 上,运行最小模型需要 101 毫秒,每次推理消耗 4.28 mJ,在 Cortex-M7 上运行中等模型需要 44 毫秒,每次推理消耗 18.1 mJ,从而实现了完全自主、可穿戴、准确的低功耗 BCI。索引术语 — 脑机接口、运动意象、CNN、嵌入式系统、边缘计算
摘要:心率作为生理健康状况最显著的指标之一,成为研究者们必研究的对象。与许多现有方法不同,本文提出了一种在时间序列缺失模式下从心电图中实现短时心率估计的方法。得益于深度学习的快速发展,我们采用双向长短期记忆模型 (Bi-LSTM) 和时间卷积网络 (TCN) 从持续时间小于一个心动周期的心跳信号中恢复完整的心跳信号,并从恢复的片段中结合输入和预测输出估计心率。我们还比较了 Bi-LSTM 和 TCN 在 PhysioNet 数据集上的性能。通过在没有明显心律失常的数据库中的静息心率范围 60–120 bpm 和有心律失常的数据库中的相应范围 30–150 bpm 上验证该方法,我们发现网络为固定格式的不完整信号提供了一种估计方法。这些结果与正常心跳数据集 (γ > 0.7, RMSE < 10) 和心律失常数据库 (γ > 0.6, RMSE < 30) 中的真实心跳一致,验证了可以通过模型提前估计心率。我们还讨论了预测模型的短期限制。它可以用于生理目的,例如时间受限场景中的移动感应,并为缺失数据模式中更好的时间序列分析提供有用的见解。
心脏听诊是一种方便的诊断筛查工具,可以帮助识别患有心脏杂音的患者,以便进行后续诊断筛查和治疗心脏功能异常。然而,需要专家来解释心音,这限制了在资源受限的环境中听诊用于心脏护理的可及性。因此,2022 年乔治·B·穆迪 PhysioNet 挑战赛邀请各团队开发算法方法,从心音的心音图 (PCG) 记录中检测心脏杂音和心脏功能异常。在挑战赛中,我们从巴西农村的 1568 名儿科患者那里收集了 5272 条 PCG 记录,并邀请各团队实施诊断筛查算法,从记录中检测心脏杂音和心脏功能异常。我们要求参与者提交完整的代码来训练和运行他们的算法,以提高他们工作的透明度、可重复性和实用性。我们还设计了一个评估指标,该指标考虑了筛查、诊断、治疗和诊断错误的成本,使我们能够研究算法诊断筛查的好处并促进开发更具临床相关性的算法。在挑战赛期间,我们收到了来自 87 个团队的 779 个算法,最终形成了 53 个可用于检测心电图心脏杂音和心脏功能异常的代码库。这些算法代表了学术界和工业界的多种方法。
大型语言模型(LLMS)在认可和分析人类言论,音乐和环境声音方面表现出色。然而,尽管有很大的科学兴趣,但他们理解其他类型的声音,尤其是生物医学声音的潜力仍然很大程度上。在这项研究中,我们专注于使用Phonocardiongons,即心脏声音诊断心血管疾病。大多数现有的深神经网络(DNN)范式仅限于心脏杂音分类(健康与不健康),并且不预测杂音的其他声学特征,例如时间,时间安排,评分,苛刻,音高和质量,这对于帮助医生可以帮助医生诊断出底层心脏状况很重要。我们建议在Physionet Circor digiscope Phonocardiogram(PCG)数据集上对Audio llm(Qwen2-audio)进行验证,并评估其在对11个专家标记的杂音特征进行分类时的性能。从事方面的目标,我们旨在通过使用音频表示模型Ssamba探索预处理细分算法来实现更多的噪声和可推广系统。我们的结果表明,基于LLM的模型在11个功能中的8个中优于最先进的方法,其余3个。更重要的是,LLM成功地将长尾杂音功能分类为有限的培训数据,这是所有以前的方法都无法分类的任务。这些发现强调了Audio LLM作为人类心脏病专家在增强心脏病诊断方面的助手的潜力。
当人们想要进行想象 (IMI) 或真实运动 (RMI) 时,脑电图 (EEG) 中会引发低频准备电位 (RP)。虽然大多数脑机接口 (BCI) 应用中面临的挑战是从给定的 EEG 试验中对不同肢体的 RP 进行分类,但本研究的目的是从整个单通道 EEG 信号中快速自动检测 RP。所提出的算法有两个阈值块,第一个阈值块基于非线性 Teager-Kaiser 能量算子 (TEO),第二个阈值块以 RP 波形的形态特性为约束。性能受到瞬变和伪影导致的突然能量变化的强烈影响。作为主要贡献,所提出的非线性凸优化算法通过提供快速阈值机制,实现将瞬变与低频分量分离。将所提出的方法应用于 Physionet RMI 数据集、BCI 竞赛 IV-1 IMI 数据集和我们自己的健康受试者左手运动数据集,可获得 76.5 ± 8.27%、83.85 ± 11.4% 和 81.1 ± 5.23% 的真阳性率 (TPR),2.4 ± 1.07、1.4 ± 0.7 和 1.6 ± 0.69 的 FPs/min 数量,以及 85.4 ± 3.83%、90 ± 3.56% 和 91.2 ± 2.04% 的准确率。我们的自动 RP 检测器的运动开始检测延迟为 -384.9 ± 296.5 毫秒。总之,所提出的方法优于使用低至单通道 EEG 的最先进的技术,使其适用于中风瘫痪患者的实时神经康复。
脑电图(EEG)是一种可在非侵入性脑机界面(BMI)系统中用于注册脑电活动的技术。EEG信号是非线性和非平稳的,使解码过程成为复杂的任务。深度学习技术已成功地应用于几个研究领域,与传统方法相比,经常改善结果。因此,人们认为这些技术还可以改善在BMI系统中解码大脑信号的过程。在这项工作中,我们介绍了两个基于深度学习的解码器的实施,并将结果与其他最先进的深度学习方法进行了比较。第一个解码器使用长期记忆(LSTM)复发性神经网络,第二个题为EEGNET-LSTM的第二个解码器将基于卷积神经网络(称为EEGNET)的众所周知的神经解码器与某些LSTM层相结合。使用BCI竞争IV的数据集2A对解码器进行了测试,结果表明,EEGNET-LSTM解码器比赢得比赛的解码器好约23%。wilcoxon t检验在两个解码器之间显示出显着的区别(z = 2.524,p = 0.012)。基于LSTM的解码器比同一竞争中最佳解码器高约9%。但是,没有显着的差异(z = 1.540,p = 0.123)。为了验证EEGNET-LSTM解码器在另一个数据上的复制,我们使用Physionet的Physiobank EEG EEG运动/成像数据集进行了测试。EEGNET-LSTM比EEGNET提出的性能(0.85精度)(0.82精度)。这项工作的结果对于开发新研究以及基于脑电图的BMI系统至关重要,这可以从神经解码器的高精度中受益。