Loading...
机构名称:
¥ 2.0

摘要:心率作为生理健康状况最显著的指标之一,成为研究者们必研究的对象。与许多现有方法不同,本文提出了一种在时间序列缺失模式下从心电图中实现短时心率估计的方法。得益于深度学习的快速发展,我们采用双向长短期记忆模型 (Bi-LSTM) 和时间卷积网络 (TCN) 从持续时间小于一个心动周期的心跳信号中恢复完整的心跳信号,并从恢复的片段中结合输入和预测输出估计心率。我们还比较了 Bi-LSTM 和 TCN 在 PhysioNet 数据集上的性能。通过在没有明显心律失常的数据库中的静息心率范围 60–120 bpm 和有心律失常的数据库中的相应范围 30–150 bpm 上验证该方法,我们发现网络为固定格式的不完整信号提供了一种估计方法。这些结果与正常心跳数据集 (γ > 0.7, RMSE < 10) 和心律失常数据库 (γ > 0.6, RMSE < 30) 中的真实心跳一致,验证了可以通过模型提前估计心率。我们还讨论了预测模型的短期限制。它可以用于生理目的,例如时间受限场景中的移动感应,并为缺失数据模式中更好的时间序列分析提供有用的见解。

根据不完整心电图信号估计心率

根据不完整心电图信号估计心率PDF文件第1页

根据不完整心电图信号估计心率PDF文件第2页

根据不完整心电图信号估计心率PDF文件第3页

根据不完整心电图信号估计心率PDF文件第4页

根据不完整心电图信号估计心率PDF文件第5页

相关文件推荐