在硅(SI)和氮化硅(SIN)基于光子整合电路(PICS)的基于硅(SI)上的薄膜(SIN)上的薄膜(PICS)的异质整合在未来未来的纳米光子薄片调制器的发展中起着至关重要的作用。由于铁电薄膜的电形(EO)特性在很大程度上取决于它们的晶体相和质地,因此在这些平台上的Batio 3薄系统的整合远非微不足道。到目前为止,已经开发了使用SRTIO 3模板结合使用SRTIO 3模板纤维与高真空沉积方法结合使用的常规集成途径,但是它的吞吐量较低,昂贵,需要单晶基板。要缩小这一差距,需要一种成本效率,高通量和可扩展的方法来集成高纹理的Batio 3薄膜。因此,提出了使用LA 2 O 2 CO 3模板膜与化学溶液沉积(CSD)过程结合使用LA 2 O 2 CO 3模板膜整合的替代方法。在这项工作中,溶液处理的BATIO 3薄片的结构和EO特性是表征的,并评估了其整合到光圈谐振器中。BATIO 3纤维表现出纹理,其大型皮孔系数(r E e镜)为139 pm v-1,并且在基于环的谐振器调制器中积分显示为1.881 V cm的V le,带宽为40 GHz。这可以使Batio 3薄膜在PIC平台上进行低成本,高通量和富裕整合,并在PIC平台上以及潜在的大规模制造纳米光子BATIO 3薄片调制器。
硅光子学已成为用于广泛应用的光子集成电路(PIC)的最广泛使用的平台之一。几乎所有这些都需要高速,低功率操作。调节剂仅基于硅,仅依赖于血浆分散效应来实现调节。血浆分散效应通过游离载体的移动引起材料的折射率变化,这意味着操作速度受这些载体的寿命限制,从而在数十吉哈特兹的命令下提供了最大可实现的带宽。在硅上新型材料的异质整合被认为是仅基于硅的调节剂的替代品。钛酸钡(BTO)就是一种可以集成到硅上的材料。在光子芯片上沉积为薄膜时,BTO表现出所有电极(EO)材料的最大塞子系数之一,同时是化学和热稳定的[1]。根据以下方程式,由于施加的电场e而导致的折射率n变化之间的线性关系给出了简化的描述:
由于普克尔斯效应和克尔效应的结合,电光 (EO) 聚合物的折射率可以通过外部电场改变。在由基质聚合物和嵌入的 EO 发色团组成的客体-主体系统中,普克尔斯效应依赖于可电极化的 EO 发色团的优先空间取向,这通常是通过在施加外部场的同时在高温下极化 EO 聚合物材料而引起的。EO 发色团由通过 π 电子共轭桥相互作用的电子给体和受体基团组成,其特性是 EO 聚合物设计的重要因素。为了最大程度地发挥普克尔斯效应,具有高玻璃化转变温度和分子尺寸相对较大的 EO 发色团的聚合物具有优势,因为它们可以提供最佳的取向稳定性 [ 1 ],这不仅在客体-主体系统中实现,而且在 EO 发色团与主体聚合物共价结合的材料中也实现了 [ 2 ]。在极化过程中,通过热 [ 3 ] 或光化学 [ 4 ] 交联主体聚合物也可提高取向稳定性。电光聚合物在电信领域的应用已被广泛探索 [ 5-7 ],其快速时间响应、低光损耗、高电光活性、稳定性和易于加工等特点已被用于空间光调制器 (SLM) 的开发 [ 8 ]。因此,最近的大部分研究活动都集中在开发近红外波长范围的电光聚合物 [ 9-12 ]。虽然关于可见光范围的电光聚合物的报道相对较少,但此类材料的未来应用可能在于可调光学滤波器和超声波的光学检测,例如用于生物医学光声 (PA) 成像研究的可调法布里-珀罗 (FP) 传感器 [ 13-16 ]。对于此类应用,需要在可见光波长区域具有高度透明性的新型电光聚合物。传统的近红外 EO 发色团虽然通常具有较高的
硅光子学目前是紧凑和低成本光子整合电路发展的领先技术。尽管具有巨大的潜力,但某些局限性,例如由于硅的对称晶体结构仍然存在。相比之下,钛酸钡(BTO)表现出强烈的效果。在这项研究中,我们证明了在硅启用硅式平台上具有高质量转移的钛酸钡铁电混合综合调制器。BTO在硅Mach-Zehnder干涉仪上提出的杂种整合表现出EO调制,其VπL低至1.67 V·CM,从而促进了紧凑型EO调节剂的实现。BTO与SOI波导的混合整合有望为高速和高效率EO调节剂的发展铺平道路。
具有铁电极内化(面向A轴或X切片膜)。这样的X切割调节器的好处是在不构图BTO的情况下轻松地在标准的硅光子过程中制造。波导可以由沉积在BTO层的硅或氮化硅制成,并在沉积的BTO层和电极上形成,以形成Te-Mode EO调节剂[13]。然而,沿晶体的X方向应用的磁场访问R 42在BTO材料中经历了极高的介电常数,通常超过1000。这个高介电常数直接转化为EO调制效率的降低。相比之下,沿z-方向应用的字段访问R 33 Pockels组件经历了典型的BTO介电常数小于60。介电载荷的减少可以抵消EO系数的降低。我们为配置制造了Mach-Zehnder调制器,并比较其制造和调节效率的易度性,并证明SI平台上的BTO适合于与硅光子制造兼容的低功率,小型脚印Mach-Zhhnder调制器兼容。
抽象的布里鲁因光散射(BLS)是一种非破坏性和非接触技术,为探测生物组织的微力特性提供了强大的工具。但是,生物组织的固有异质性在解释BLS光谱时会构成重大挑战。在这项研究中,我们引入了一种新型方法,该方法利用单个BLS频谱中的强度信息,以直接估计纵向模量的VOIGT平均值。此外,我们还使用一种方法来确定基于2D BLS图的全局分析,用于光固有异质样品的平方孔系数的比率。该方法显示出有效地确定人骨组织的软和硬成分的光弹性比,从而能够计算平均弹性模量。此外,它具有出色的能力,可以生成散射体积的填充因子的地图,从而在BLS映射下的粗糙表面的复杂结构和地形上散发出宝贵的光线。
†同等贡献;电子邮件:aaron.thean@nus.edu.sg摘要 - 我们首次成功证明了创新的后端(beol)兼容的电磁调节器和内存(Eomm)基于niobate基于绝缘体(LNOI)的niobate(lnoi)Micro-Ring Rings Resonator(MRR)的5 ZRRING 0. ZRRICTRRICRICRICRICRICRICRICTRRICRICTRICTRICTRICRICRICTRRICRICTRICRICRICTRICTRICTRICTRICTRICRICRONE (HZO)非挥发性模拟记忆。高的非易失性记忆和调制性能都在单个紧凑型装置中实现,高灭绝比为13.3 dB,出色的效率为66 pm/v,稳定的九态开关,创纪录的耐力超过10 9个循环。这是通过利用LNOI中的Pockels效应来实现的,这是由残留的HZO铁电偏振的电场效应引起的。我们研究了由Eomm和Hybrid热光调制的Eomm启用的可重新配置的Chiplet-interposer光子互连的系统实现。我们的模型显示出与常规电气插座互连相比,潜在的70%能效提高。我们还测试了Eomm与Poet Technologies的400G TX/RX光学插入器芯片的集成,并研究了Eomm设备的有限规模演示。
作为铁电材料,坦坦酸锂和硝酸锂具有相似的材料特征,例如高骨效应和非纤维光学系数。与尼贝特锂相比,坦坦酸锂提供了更高的光学损害阈值,更宽的透明窗口和较低的双折射,这使其成为高性能电光光子积分设备的有前途的候选者。在这项研究中,我们在声学级锂 - tantalate-in-umbulator晶圆上设计并成功地制造了微环谐振器,证明了它们的可调性和动态调制功能。实验结果表明,已实现的薄膜基于诱导的微锂基微环谐振器的内在Q因子为8.4×10 5,对应于0.47 dB/cm的波导传播损失,调谐效率为1.94 pm/v。更重要的是,与基于薄膜锂锂锂相比,在直接驱动器下,在1550 nm波长围绕1550 nm波长附近的光疗法效应和漂移现象较弱,在当前制造的薄膜lithium lithm lithm lithm lithm lithrate微环中,具有硅质氧化物氧化氧化物的微环,并在硅氧化物中过度呈硅质过度旋转,并置于可音机上的电极。
来自光学微孔子的耗散kerr孤子(通常称为唯一微型群)已开发用于广泛的应用,包括精度测量,光学频率合成以及超稳的微波和毫米波的产生,都是在芯片上。Microcombs的一个重要目标是自引用,这需要八度带宽来检测和稳定梳子载体信封偏移频率。此外,通常使用频划分来实现梳子间距的检测和锁定。薄膜锂Niobate光子平台,其低损失,强大的二阶和第三阶非线性以及较大的Pockels效应非常适合这些任务。然而,在这个平台上证明,跨八度的孤子巨型镜头很具有挑战性,这在很大程度上是由于强烈的拉曼效应阻碍了可靠的孤子设备的可靠制造。在这里,我们在薄膜锂锂锂上完全连接并跨八度的孤子微角色。通过适当控制微孔自由光谱范围和耗散光谱,我们表明抑制孤子的拉曼效应被抑制,并用近乎无限的产量制造了孤子设备。我们的工作提供了一种明确的方法,可以在强烈的拉曼活性材料上生成孤子。此外,它可以预测单一整合,自我引用的频率标准与已建立的技术,例如薄膜锂锂锂锂。