以及弱势群体 移动污染源和为其提供动力的化石燃料是以下污染的最大贡献者: § 臭氧前体物 § 细颗粒物 (PM2.5) § 柴油颗粒物 § 温室气体 (GHG)
自从近 25 年前发现液态矿物前体以来,人们就开始研究通过液态矿物前体进行材料合成,因为它们的特性提供了多种优势,例如,能够渗透小孔、产生非平衡晶体形态或模仿生物矿物的纹理,从而产生广泛的潜在应用。然而,液态前体的潜力从未得到充分挖掘,它们在材料化学界受到的关注有限,这主要是由于缺乏高效且可扩展的合成方案。本文介绍了“可扩展的液态前体的控制合成和利用及其技术应用”(SCULPT)方法,该方法可以在克级上分离前体相,并展示了其在合成结晶碳酸钙材料和相应应用方面的优势。研究了不同有机和无机添加剂(如镁离子和混凝土高效减水剂)对前体稳定性的影响,并允许针对特定需求优化工艺。该方法易于扩展,因此可以大规模合成和利用前体。因此,它既可用于修复和保护应用中的矿物形成,又可为碳酸钙基、CO 2 中性水泥开辟道路。
Tetrayne前体3A-C通过2倍铃木交叉偶联(2倍)与市售的1A-C(方案1)获得了良好的收率(72-76%)。17个四倍的氯化苯苯二苯甲酸是通过使用含有3和AGNTF 2处理的Tetrayne前体来实现的,并且所得的二皮肾上腺粒纳米仪4A-B以76%和81%的良好产率获得了4A-B。18,19这些化合物的计算结构在主链中表现出扭曲。然而,人们认为对映异构化的障碍是如此之低,以至于使化合物具有易感性。纳米摄影4C。存在羰基矫正物和para到苯量反应位点从这些位置中撤出电子密度,使它们过于反应,无法完全苯并式发生,并导致产物的复杂混合物。
• 具有可控原子位点、纳米结构和介观结构的金属改性氧化物/沸石 • 通过分子前体热解的金属碳化物、氮化物、磷化物 • 具有可控形貌、成分和晶相的纳米结构材料的可扩展溶液合成
该项目将涉及各种危险化学品和气体的使用和处理以及危险废物的产生。这些包括溶剂、陶瓷前聚合物前体、涂层前体、石墨工具、陶瓷纤维和粉末。加利福尼亚州圣地亚哥的 GA 站点的所有活动都将按照 GA 的危险工作授权流程进行,该流程由 GA 的许可、安全和核合规 - 健康与安全部门授权。所有活动都将在安全的实验室环境中进行,符合美国环境保护署 (USEPA)、加利福尼亚州有毒物质和控制部 (DTSC) 以及 GA 的化学和危险废物处理和管理规范。所有危险材料都将根据美国环境保护署、DTSC 和圣地亚哥县当地环境和安全法规进行管理。
造血是由诱导造血干细胞及其后代分化和增殖的分子机制驱动的。这涉及各种转录因子的活性,例如分裂(HES)家族的毛/增强子的成员以及HES1和HES4的重要作用,已显示在正常和恶性造血中。在这里,我们使用体外和体内模型研究了HES6在人造血中的作用。使用大量和单细胞RNA序列数据,我们表明HES 6在红细胞/巨核细胞和浆细胞类动物树突状细胞的发育以及多能前体以及在T-B-cell发育的特定阶段中表达,分别在T-和B细胞发育的特定阶段中。一致地,在体外分化良好的体外分化测定中,在脐带血源性血液中的HES6敲低导致人类造血质体前体降低了对巨核细胞,红细胞,血浆乳清细胞,血浆乳清细胞,B细胞,B细胞和T细胞的分化。此外,HES6敲低造血茎和祖细胞在体外表现出降低的菌落形成单位容量,并且在竞争性移植测定中在体内重新构成造血的潜力受损。我们证明,HES6表达的丧失对红细胞分化过程中的细胞周期进程有影响,并为影响这些扰动的潜在下流靶基因提供了证据。因此,我们的研究为HES6在人类造血中的作用提供了新的见解。
下午 1:00 TS-SuA-1 正电性金属和元素薄膜的热原子层沉积及其在基底上固有选择性生长的评估,Charles Winter,韦恩州立大学受邀我们的实验室正在开发新的化学前体,用于通过原子层沉积 (ALD) 生长正电性金属和元素薄膜。我们还对表现出区域选择性生长的工艺感兴趣,尤其是不需要阻断或失活基团的固有选择性生长。ALD 目前在铜金属化、扩散屏障、衬里和晶体管制造方面有许多应用。热 ALD 通常是首选,因为等离子体可以提供低保形覆盖率,这是由于深而窄特征壁上的自由基复合。近年来,铜和贵金属薄膜的热 ALD 取得了广泛进展,因为正的电化学电位可以使前体离子相对容易地还原为金属。由于离子的电化学电位为负,且目前缺乏能够将离子转化为金属或元素的 ALD 辅助试剂,因此针对元素周期表中大多数其他金属和元素的热 ALD 方法尚未得到很好的发展。在本教程中,将介绍镍、钴、铝等正电性金属的热 ALD 生长。使用含有二氮杂二烯基 (RN=CHCH=NR) 配体的前体,已经实现了镍和钴金属膜的 ALD。这些前体能够在低于 200°C 的温度下沉积钴和镍金属膜,并使用烷基胺作为良性辅助试剂。生长速率高(镍为 0.60 Å / 循环,钴为 0.98 Å / 循环),可获得高纯度、低电阻率的金属膜,并且膜具有低均方根粗糙度。这些工艺在铂、钌和铜等金属基材上表现出固有的选择性生长。相比之下,在绝缘基板上没有观察到生长。我们还将描述一类新的热 ALD 前体和钴和铜金属膜的工艺。使用适当的共反应物可以在金属基板上实现钴和铜的固有选择性生长。最后,将介绍一种用于铝金属膜生长的热 ALD 工艺。该工艺需要用热稳定、挥发性的氢化铝共试剂处理表面结合的 AlCl 3。铝金属 ALD 工艺的生长速度很高,并且可以获得高纯度、低电阻率的铝金属膜。我们将介绍铝金属膜区域选择性生长的前景。这些示例表明,通过精心设计前体和化学成分,可以为正电性金属实现热 ALD 工艺。
• 混合原料挑战 • 操作:反应器类型、按比例缩小或按比例放大(取决于原料) 气化后清理:不同的原料会导致不同的杂质 合成气用途:合成气为化学品和燃料的前体或其他用途
摘要 本研究致力于将通过硬模板法制备的中孔-大孔 SiO 2 块体碳材料的纳米级孔隙空间与相应的纳米级多环芳烃微结构连接起来,使用两种不同的碳前体,即可石墨化沥青和不可石墨化树脂,这两种碳前体通常表现出明显不同的碳化特性。通过与典型的气体吸附物 (Ar) 相比,相对较大的有机分子 (对二甲苯) 的吸附行为研究了这些块体碳材料的微孔和中孔率。此外,为了详细了解纳米孔隙空间,应用了小角度中子散射 (SANS) 结合原位物理吸附,在中子散射过程中使用氘代对二甲苯 (DPX) 作为对比匹配剂。通过 SANS 和广角 X 射线散射 (WAXS) 的特殊评估方法,分析了碳前体对碳微结构尺寸和无序性方面的原子尺度结构顺序、纳米孔结构和模板过程的影响。WAXS 分析表明,与单块树脂相比,沥青基单块材料表现出更有序的微观结构,由更大的石墨烯堆叠和相似的石墨烯层尺寸组成。另一个主要发现是,在两种不同的碳前体沥青和树脂中发现的氩气和氘代对二甲苯之间的可及微孔/中孔率存在差异,而沥青和树脂通常可被视为具有代表性的碳前体。这些差异本质上表明,如果使用探测气体(例如 Ar 或 N 2)进行物理吸附来评估纳米级孔隙空间的可及性,则可能会提供误导性参数。