全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
AEL Alkaline electrolysis bbl Barrels of oil BMWi Bundesministerium für Wirtschaft und Energie BF-BOF Blast furnace - basic oxygen furnace CCS Carbon capture and storage COVID 19 Coronavirus pandemic 19 CPG Compagnie des Phosphates de Gafsa CSP Concentrated solar power d Day DAC Direct air capture DAP Diammonium phosphate DCP磷酸钙DLR德国航空航天中心dri-eaf直接降低铁电弧炉EAF电弧炉EHS欧洲氢策略ETAP ENTREPRISE tumisienned'ActivitésPétrolièresPétrolièresETS ETS ETS ETER EUSOR EUSOUR EUSOUR EUS ERSISSION ERSIONS TRADION贸易计划图GCT组Chimique突尼斯同上。Ibidem IEA International Energy Agency IRENA International Renewable Energy Agency LCOE Levelised cost of electricity LPG Liquid petroleum gas MAP Monoammonium phosphates NHS National hydrogen strategy of Germany PEM Polymer electrolyte membrane-electrolysis PtG Power-to-gas PtH Power-to-heat PtL Power-to-liquid PtX Power-to-X SNG Synthetic natural gas STEG Société tunisienne del'électricitéet du gaz stroussociététunisienne des Industries du raffinage tab。表TCO总拥有成本TSP TSP三重超级磷酸盐USGS美国地质调查局Wi Wuppertal InstitutfürKlimaUmwelt,Energie GmbH
能源生产和交通领域的脱碳需要立即采取行动,增加可再生能源技术的使用,以应对全球变暖。[1–3] 与此同时,可再生能源在能源网中的系统安全整合在很大程度上取决于能源供应、传输能力和需求在所有时间尺度(短期到季节性或年度)以及不同系统层级(分散式和集中式)上的灵活性。[4–8] 这只能通过开发综合存储和燃料系统来实现,该系统需要涉及不同载体(热能、燃料和电力)的一系列不同技术。[9] 此外,需要有效发展跨部门整合,以促进可持续的能源转型。尤其是能源存储技术被视为系统灵活性的重要支柱,为部门耦合提供了巨大的潜力。 [10] 现有的技术包括不同的二次电池(锂离子或氧化还原液流电池)、机械能储存(如抽水蓄能或压缩空气储能)以及将可再生电力转换为二次能源载体(即电转氢、电转甲烷、电转氨等)。[11–14] 事实证明,电池通过提供广泛的电网服务,是短期缓解电网波动(可再生能源发电过剩和短缺)的最合适的解决方案。[11–13] 同时,对于目前提议的较长时间的能源载体,PtX 技术通常被称为将可再生和无碳电力转化为燃料的理想途径。 [15] 与其他能量载体相比,H2 以这种方式提供了最高的质量能量密度,但对于较长的存储时间,其较低的体积能量密度限制了其应用,这主要是由于 H2 存储量大且成本高昂。[16]
介绍:卵巢癌是妇科系统的顽固恶性肿瘤,死亡率很高。Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。 但是,其临床应用受到差的生物利用度的阻碍。 已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。 因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。 方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。 模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。 在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。 结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。 药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。 MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。 体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。 关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。但是,其临床应用受到差的生物利用度的阻碍。已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付结论:我们通过全身给药设计了可注射的DTX-CUR/M纳米细胞,用于DTX和Cur剂的共递送到肿瘤部位。DTX-CUR/M纳米固体将是一种可生物降解,可持续和强大的抗肿瘤药物候选者,具有巨大的卵巢癌治疗潜力。
1 码头调查研究所。Unidad Asociada de Fitoplancton Tóxico (CSIC-IEO)。Vigo 2 Laboratorio de Sanidad 外观。领土政治和公共行政部。Vigo pilar.riobo@vi.ieo.es 目录 1.摘要 2.亲水性毒素:2.1。PSP 毒素:STX 2.2 组。ASP 毒素:多莫酸 3.亲脂性毒素 3.1 一般提取程序 3.2 DSP 毒素:冈田酸组 3.3 AZP:Azaspiracids 3.4 海葵毒素 3.5 雪卡毒素 3.6 NSP:短藻毒素 4. div>尚未证实对人类有影响的脂溶性毒素 4.1 YTX 组 4.2 PTX 组 4.3 环状亚胺组:Espirolids、Gymnodimines、Pinnatoxins 和 Pteriatoxins 5.结论 6.< div> 致谢 7.参考文献 1.摘要 藻毒素是海洋生物合成的天然产物微藻,尤其是属于甲藻类的微藻。目前已知约有 20 种甲藻和少量硅藻会产生藻毒素,这些藻类占所有微藻种类的不到 2%。众所周知,它们会在从热带到极地纬度的整个食物链中产生中毒综合症 (Hallegraeff, 1993)。海洋生物毒素是结构差异很大的非蛋白质化合物,其分子量介于250-3500道尔顿。它们的物理化学性质根据其极性、亲脂性、热稳定性、对pH、氧气和光的敏感性等而变化。生物毒素中毒的危险对人类的影响在于其急性和慢性影响。食用受海洋生物毒素污染的海鲜可能会导致严重疾病,影响:麻痹性贝类中毒 (PSP) 中的神经系统、腹泻性贝类中毒 (DSP) 中的肠道系统以及失忆性贝类中的记忆丧失中毒(ASP)。在多个国家的海鲜中发现的其他知名毒素是短尾藻毒素 (BTX)、雪卡毒素 (CTX)、海葵毒素 (PLTX) 和河豚毒素 (TTX)。它们的作用方式尚不清楚,(Hu 等人,2001;Miles 等人,
缩写:5-FU,5-氟尿嘧啶;AA-CoA,花生四烯酸辅酶 A;ABCC1,ATP 结合盒,C 亚家族(CFTR/MRP),成员 1;ACC,无定形碳酸钙;ACLS4,酰基辅酶 A 合成酶家族 4;AdA-CoA,肾上腺酸辅酶 A;ALDH,醛脱氢酶;AML,急性髓细胞白血病;APC,抗原处理细胞;ARE,抗氧化反应元件;ART,青蒿素;BAX,BCL-2 相关 X 蛋白;BCL-2,B 细胞淋巴瘤 2;BTIC,脑肿瘤起始细胞;CBR,临床受益率;CLL,慢性淋巴细胞白血病;CNSI-Fe(II),碳纳米颗粒负载铁;CQ,氯喹;CRPC,去势抵抗性前列腺癌; CSC,癌症干细胞;CTL,细胞毒性 T 淋巴细胞;CuET,二乙基二硫代氨基甲酸铜 (II);DAMP,损伤相关分子模式;DFO,去铁胺;DHA,双氢青蒿素;DLAT,丙酮酸二氢硫酰赖氨酸残基乙酰转移酶成分;DMT1,二价金属转运蛋白 1;DOX,阿霉素;DRD2,多巴胺 D2 受体;DSF,双硫仑;EGFR,表皮生长因子受体;EMT,上皮-间质转化;ER,内质网;ETO,依托泊苷;FDX1,铁氧还蛋白 1;FER-1,铁抑制蛋白 1;FMN,基于框架的纳米剂;FPN1,铁转运蛋白 1;FTH1,铁蛋白重链 1; FTL1,铁蛋白轻链 1;GPX4,谷胱甘肽过氧化物酶 4;GSH,谷胱甘肽;GSS,谷胱甘肽合成酶;H 2 O 2,过氧化氢;HNC,头颈癌;HO-1,血红素加氧酶-1;ICD,免疫细胞死亡;ICIs,免疫检查点抑制剂;IDH1,异柠檬酸脱氢酶 1;IFN-γ,干扰素-γ;IREB2,铁反应元件结合蛋白 2;IREs,铁反应元件;IRP-2,铁调节蛋白 2;IRPs,铁调节蛋白;JAK,Janus 酪氨酸激酶;KEAP1,kelch 样 ECH 相关蛋白 1;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;LA,硫辛酸; LC3II,微管相关蛋白 1 轻链 3α;LDH,乳酸脱氢酶;LiMOFs,锂基金属有机骨架;LIPRO-1,利普司他丁 1;LOX,脂氧合酶;LPCAT3,溶血磷脂酰胆碱酰基转移酶 3;MDA,丙二醛;MFC-Gem,载吉西他滨的碳质纳米粒子;MGMT,甲基鸟嘌呤甲基转移酶;MMNPs,磁性介孔二氧化硅纳米粒子;MMP-2,金属蛋白酶-2;MnFe 2 O 4 ,锰铁氧体;mRNAs,信使 RNA;NEPC,神经内分泌前列腺癌;NF- κ B,活化 B 细胞的核因子 κ 轻链增强子;NFS1,半胱氨酸脱硫酶;NK,自然杀伤细胞; NOX,NADPH 氧化酶 1;NRF2,核因子红细胞 2 相关因子 2;NSCLC,非小细胞肺癌;OC1,耳蜗毛细胞;OS,总生存率;P62,隔离小体 1;PET,正电子发射断层扫描;P-GP,P-糖蛋白;PCC,持久癌细胞;PCN(Fe) MOFs,Fe 3 + 卟啉金属有机骨架上的 PEG;PD-L1,程序性死亡配体 1;PDAC,胰腺导管腺癌;PEG,聚乙二醇;PGE2,前列腺素 E2;PGRMC1,孕酮受体膜成分 1;PHPM,ROS 敏感聚合物;PTX,紫杉醇;PUFA,多不饱和脂肪酸;PUFA-OOH,磷脂多不饱和脂肪酸过氧化物;RIPK-1/2/3,受体相互作用丝氨酸/苏氨酸蛋白激酶 1/2/3;ROS,活性氧;RR,反应率;siRNA,小干扰 RNA;siSLC7A11,SLC7A11 siRNA;SLC3A2,溶质载体家族 3 成员 2;SLC40A1,溶质载体家族 40 成员 1;SLC7A11,溶质载体家族 7 成员 11;STAT1,信号转导和转录激活因子 1;TAM,肿瘤相关巨噬细胞;TCA,三羧酸循环;TFR,转铁蛋白受体;TME,肿瘤微环境; TMZ,替莫唑胺;TP53,细胞肿瘤抗原 p53;TRADD,肿瘤坏死因子受体 1 型相关死亡结构域蛋白;TTP,进展时间;US FDA,美国食品药品管理局;UTRs,非翻译区;VDAC,电压依赖性阴离子通道;xCT,谷氨酸-胱氨酸反向转运蛋白;Z-VAD-FMK,羧苄氧缬氨酰丙氨酰天冬氨酰-[O-甲基]-氟甲基酮;γ-GCS,γ-谷氨酰半胱氨酸合成酶。 * 通讯作者。电子邮箱地址:mateusz.kciuk@biol.uni.lodz.pl (M. Kciuk)。
缩写:ANG,血管生成素;ANXA1,膜联蛋白A1;ATP,三磷酸腺苷;ATRA,全反式维甲酸;BCC,乳腺癌细胞;BDL,胆管结扎;BSA,牛血清白蛋白;BXPC-3,胰腺癌细胞系;CAF,癌相关成纤维细胞;CAP,可裂解两亲肽;CD26,二肽基肽酶-4;CD,分化簇;CLSM,共聚焦激光扫描显微镜;CM-101,胶原蛋白靶向探针;CPP,细胞穿透肽;CSC,癌症干细胞;CTC,循环肿瘤簇;CXCR,趋化因子受体;DCE,动态对比增强;DGL,树枝状移植聚-L-赖氨酸; DOTA,2,2 0,2 00,2 000-(1,4,7,10-四氮杂环十二烷-1,4,7,10-四基)四乙酸;DOX,阿霉素;DRP,损伤反应程序;DTPA,二乙烯三胺五乙酸酯;EA,鞣花酸;ECM,细胞外基质;EGFR,表皮生长因子受体;EMT,上皮-间质转化;EPR,增强渗透和滞留;ER,雌激素受体;FAK,粘着斑激酶;FAP,成纤维细胞活化蛋白;FAPI,FAP 抑制剂;FDA,食品药品监督管理局;FDG,氟脱氧葡萄糖;FITC,异硫氰酸荧光素;FOLFIRI,5-氟尿嘧啶,亚叶酸,伊立替康; FOLFIRINOX,5-氟尿嘧啶、亚叶酸钙、伊立替康和奥沙利铂的组合;FPR2,甲酰肽受体 2;FSP1,成纤维细胞特异性蛋白 1;FU,5-氟尿嘧啶;GA,18b-甘草次酸;GBq,千兆贝克勒尔;GEM,吉西他滨;GPER,G 蛋白偶联雌激素受体;GSH,谷胱甘肽;HA,透明质酸;HBSS,汉克斯平衡盐溶液;HER2,人表皮生长因子受体 2;HGF,肝细胞生长激素;HIF,缺氧诱导因子;HRCT,高分辨率计算机断层扫描;HSA,人血清白蛋白;HSP47+,热休克蛋白 47; HSPG2,硫酸肝素蛋白聚糖 2;HSTS26T,人软组织癌;HSV,单纯疱疹病毒;ID/g,每克注射剂量;IFN,干扰素;IFP,间质液体压力;IGF1,胰岛素样生长因子;IL,白细胞介素;IPF,特发性肺纤维化;IPI-926,Hedgehog 通路抑制剂;ITGA11,整合素亚基 α 11;ITGA5,整合素亚基 α 5;JAK,Janus 激酶;JNK,Jun N - 末端激酶;KPC,胰腺导管腺癌的临床相关模型;KRAS,Kirsten 大鼠肉瘤病毒;LCP,脂质磷酸钙纳米颗粒;LOXL2,赖氨酰氧化酶样 2; LPD,脂质包被的鱼精蛋白 DNA 复合物;LPP,脂肪瘤首选伴侣;LST-Lip,氯沙坦包裹的脂质体;LXA4,脂氧素 A4;MAPK,丝裂原活化蛋白激酶;MCT4,单羧酸转运蛋白 4;MET,肝细胞生长因子受体;MHC,主要组织相容性复合体;MMP,基质金属蛋白酶;MPS,单核吞噬细胞系统;MRI,磁共振成像;MSC,间充质干细胞;mTOR,哺乳动物雷帕霉素靶蛋白;MU89,人黑色素瘤;NF,正常成纤维细胞;NH 2,胺基;NK,自然杀伤细胞;NO 2,一氧化氮;NODAGA,1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;NP,纳米粒子;NSCLC,非小细胞肺癌;PAMAM,聚酰胺胺;PD-1,程序性细胞死亡蛋白 1;PDAC,胰腺导管腺癌;PDGF,血小板衍生生长因子;PDGFR,PDGF 受体;PDT,光动力疗法;PDX,患者来源的异种移植;PEG,聚乙二醇;PEGPH20,重组人透明质酸酶 PH20 的聚乙二醇化形式;PET,正电子发射断层扫描;PFT,周细胞向成纤维细胞转变;PGE2,前列腺素 E2;PP,聚乙二醇-聚己内酯;PSC,胰腺星状细胞;PSMA,前列腺特异性膜抗原;PTC,乳头状甲状腺癌;PTX,紫杉醇; QD,量子点;QP,槲皮素磷酸盐;RGD,三肽精氨酸-甘氨酸-天冬氨酸;RNA,核糖核酸;ROCK,Rho 相关蛋白激酶;ROS,活性氧;RUNX3,Runt 相关转录因子 3;SATB,特殊 AT 富集序列结合蛋白 1;SBRT,立体定向放射治疗;SDF-1,基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体; TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1;VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献均等。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。