我们提出了一种将太赫兹 (THz) 频率量子级联激光器 (QCL) 完全集成到稀释制冷机内的方案,以便将 THz 功率定向传输到样品空间。我们描述了位于制冷机脉冲管冷却器级上的 2.68 THz QCL 的成功运行,其输出通过空心金属波导和 Hysol 热隔离器耦合到位于毫开尔文样品级上的二维电子气 (2DEG) 上,实现了从 QCL 到样品的总损耗 ∼− 9 dB。热隔离器限制了热量泄漏到样品空间,实现基准温度 ∼ 210 mK。我们观察了 QCL 在 2DEG 中引起的回旋共振 (CR),并探讨了 QCL 对制冷机所有阶段的加热影响。在低至 ∼ 430 mK 的电子温度下可以观察到由 THz QCL 引起的 CR 效应。结果表明,在稀释制冷机环境中利用 THz QCL 以及在极低温(< 0.5 K)凝聚态实验中传输 THz 功率是可行的。
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
最近已经证明了Terahertz(THz)发射量子级联激光(QCL)梳子的全相控制,即使是最苛刻的应用,也为新的视角开辟了新的观点。在此框架中,简化控制这些设备的设置将有助于加速其在许多领域的传播。这项研究报告了一种使用非常简单的实验设置来控制THZ QCL梳子的发射频率的新方法,从而利用了普通的白色光发射二极管的不相干发射。在这些条件下可访问的略有扰动式允许调整半导体的复杂折射率,而不会破坏宽带激光增益。软执行器的表征并与另一个执行器(QCL驱动电流)进行了比较。显示了这种额外的自由度对于频率和thz QCL梳子的相位稳定的适用性,并讨论了观点。
量子级联激光(QCL)系统已经成熟,并且在新一代产品的先锋范围内,这些产品支持军事应用,例如红外对策(IRCM)(IRCM)和目标。飞机平台的苛刻产品需求包括降低尺寸,重量,功耗和成本(SWAP-C)扩展到便携式电池供电的手持产品。QCL技术在整个中波(MWIR)和长波(LWIR)红外运行,以提供利用现有热成像摄像机的新功能。除了对飞机平台的适用性外,QCL产品非常适合满足操作员对小型,轻巧的指针和信标功能的需求。高功率,轻巧,电池操作的设备的现场测试已在一系列空气和地面应用中证明了它们的实用性。本演讲将介绍QCL技术以及由其启用的防御和安全产品和功能的概述。本演讲还将概述与基于QCL技术相关的产品相关的广泛环境和性能测试。
图。1。耦合赛车量子级联激光器(QCLS)的谐振行为。如复杂的金兹堡 - 兰道方程(CGLE)所预测的那样,未耦合的赛车QCL会产生Nozaki-Bekki(NB)solitons。b两个耦合赛车QCL散发出两个孤子光谱 - 一个具有强泵线,另一个没有。频谱的缩放部分表明,耦合腔的杂交共振上的耦合赛道lase。c显示了此工作中使用的耦合赛车QCL的显微镜图像,称为RT 1和RT 2。RT 1的波导(WG),赛车(RT)和加热器(HT)分别是彩色蓝色,紫色和红色。四个切割的波导刻面充当RTS中产生的远离激光的端口,或用外部光源探测系统。d,耦合激光系统在其激光阈值以下探测,并用可调的单频QCL注入端口1。在端口4的出口处测量探针激光器的传输,而两个RT的偏置分别从20 mA到410 MA和350 mA的RT 1和RT 1扫描。探针激光器设置为1,227 cm -1-围绕QCL增益材料的峰值增益响应。对高RT偏置的高分辨率扫描揭示了耦合RT的谐振结构中的抗突。e,DC偏向于其阈值以上的两个RT偏置在室温下产生电源的MW(WGS在200 mA处有偏见)。
摘要:量子级联激光器 (QCL) 因其灵活的设计和紧凑的体积而成为一种无处不在的中红外光源。制造具有高功率水平和良好光束质量的多波长 QCL 芯片对于许多应用而言都是非常可取的。在本研究中,我们通过在单个芯片上集成五个 QCL 增益部分阵列和阵列波导光栅 (AWG),展示了 λ ∼ 4.9 µ m 单片波长光束组合 (WBC) 红外激光源。来自切割面的光反馈使激光能够产生,而集成的 AWG 将每个增益部分的发射光谱锁定到其相应的输入通道波长,并将它们的信号在空间上组合到单输出波导中。我们的芯片具有来自公共孔径的高峰值功率,每个输入通道超过 0.6 W,在脉冲模式下运行时,边模抑制比 (SMSR) 超过 27 dB。我们的主动/被动集成方法可实现从 QCL 脊到 AWG 的无缝过渡,无需再生长或衰减耦合方案,从而实现稳健的设计。这些结果为开发适用于高光谱成像等应用的高度紧凑中红外源铺平了道路。
[11],文献中缺乏关于 ICL 器件性能如何依赖于层结构参数变化的讨论和研究,这可能使一些人持怀疑态度。通过对源电池和基底进行非常稳定的温度控制,可以将结构偏差降至最低。即便如此,由于 ICL 结构中采用的 III - V 族材料范围以及生长它所需的时间长度,合金成分和层厚度的一些意外变化是不可避免的。在本文中,通过研究由两个结构无意中与设计有很大偏差的 ICL 晶圆制成的器件,我们评估了器件性能特征在多大程度上能够承受无意的结构变化。此外,我们证明即使与设计有很大偏差,器件性能仍然可以相当好。需要注意的是,我们报告的 ICL 耐久性并不一定适用于 QCL,因为 QCL 的快速声子散射时间在皮秒量级(甚至更短)。由于这与载流子带内渡越时间相当,因此 QCL 中的粒子数反转条件更具挑战性。相比之下,对于 ICL,带间跃迁时间在纳秒量级 - 比导带或价带中的声子散射时间和带内渡越时间长三个数量级。因此,ICL 中的两个带间跃迁态之间可以很好地建立粒子数反转,而不必像 QCL 那样依赖于不同带内状态之间微妙的能级排列和快速声子介导的耗尽效应
摘要:在这项工作中,我们通过采用了一个操作的耦合 - ridge波导(CRW)结构,证明了以λ〜5μm的激光为λ〜5μm的高功率量子级联激光(QCL)阵列。五元素QCL阵列进行了模拟和制造,以将CRW结构扩展到中波红外状态。通过正确设计山脊和空间的几何形状,可以观察到约10°的衍射限制强度曲线附近的主峰的侧面远场。通过引入埋入的2阶分布式反馈(DFB)光栅,在25°C下以高于1 W的辐射功率的底物发射。单个纵向模式的操作是通过更改良好的细胞波长调音系数为–0.2 cm –1 /k的温度来获得的。
部门KAIST LAB NAME研究领域主管联系网站量子计算实验室(QCL)量子计算AHN,Jaewook jwahn@kaist.ac.ac.ac.kr http://qcl.kaist.ac.ac.ac.ac.kr超级量子量子现象实验室实验室理论理论,实验室理论,量子理论,量子量子,量化光学,超级速度。超快互动Andrey Moskalenko moskalenko@kaist.ac.kr https://tuqp.kaist.ac.ac.kr