量子纳米结构的开发对于在长波长红外(LWIR)窗口中的光电探测器技术的发展至关重要,尤其是成功实施量子点(QDS)具有可能导致该领域的世代相传的潜力[1]。尽管有承诺,但与最先进的技术相比,基于QD的光电探测器的性能仍然缺乏。我们提出了一种创新的解决方案,可以通过利用量子点局部状态到连续体中的谐振状态的吸收来超过当前的基于QD的检测器,即半导体导带中的状态具有增强的量子点区域的概率密度[2]。这种方法利用了此类状态的独特特性,可以大大增强载体提取,从而克服了基于量子点的红外探测器的最关键缺点之一。
Outlook:从化学的角度来看,需要在QD制造方面的进展来维持和改善所需的化学和光电特性,并具有高可重复性。这需要使用廉价的合成方法和能够将实验室规模QD属性保留到市场相关的体积的廉价合成方法。需要更好地理解QD表面,原子布置和元角色的尚未完整的图像,以推动进一步的进步。从监管的角度来看,需要增加注意力以获得不依赖重金属(例如CD,PB和HG)的高质量材料。纳米结构在每种应用中的毒性和生命周期分析中的作用越来越重要。从伴侣和光体物理学的角度来看,令人兴奋的机会在对电子高度密闭材料中电子的理解和利用中仍然存在,从而弥合了成熟的外观QD和仍在上升的胶体QD之间的差距。后者的尚未达到的质量(今天为易于制造而支付的价格)仍然是一个核心挑战,必须应对设备的进一步提高性能。从依据的角度来看,胶体QD制造必须提高到从实验室规模转换为大区域应用,例如滚动到滚动和喷墨印刷。光催化,其中使用光用于驱动化学转移,是一个新兴的QD感兴趣的领域。向前迈进,在启用了QD的新范围架构的设计中仍然存在机会。▪量子信息技术依赖于相干光和电子的转导,带来了新的挑战和机会来利用量子限制效应。
在膨胀宇宙学中,准德西特优雅退出使我们能够测量原始 dS 相的量子特征,特别是由谱指数 ns 参数化的尺度不变性的缺乏。在本文中,我们总结了之前关于如何在 dS 平面基态 (dSQFI) 的 dS 量子 Fisher 信息中实现底层原始标度定律的工作。在大尺度上,dSQFI 明确地将 ns 的值设置为 0.9672,而无需任何 qdS 输入。该值与张量与标量之比无关,该比的值需要模型相关的输入。此外,dSQFI 预测,在大尺度上,小规模的运行与当前的实验结果兼容。dSQFI 对小尺度的其他现象学后果将在未来的出版物中讨论。© 2022 Elsevier BV 保留所有权利。
一般范围:单光子源是量子通信和计算框架中的关键组成部分。特别是,它们是由量子物理定律本质上保护的秘密解密密钥所必需的。我们的小组开发了嵌入在自下而上的核心壳ZnSE纳米线(NWS)中的CDSE量子点(QD)的生长和光学研究,所有这些都由分子束外延(MBE)生长。我们已经表明,这些QD能够发射到室温至室温的单个光子。此外,它们在蓝绿色光谱范围内的排放尤其适合自由空间和水下通信。主题:主实习旨在控制这些CDSE/ZNSE NW-QD的增长,以提高其作为单光子发射器的效率。这意味着:(i)优化核壳型纳米线异质结构的生长,以增强发射量子产率,(ii)获得对QD形状和纯度的控制以允许纠缠光子的发射。实习结合了MBE的生长,结构表征(扫描电子显微镜)以及光学表征。它提供了探索广泛的基本物理现象(增长机制,光学特性等)在纳米尺度上,同时为量子通信和量子信息处理领域必不可少的设备的开发做出了贡献。环境与合作:我们的小组“纳米物理学和半导体”是一个联合CEA/CNRS团队,实习生将与我们小组的CEA-IRIG和CNRS-NEEL的研究人员进行紧密互动。必需的技能:纳米科学,材料科学,半导体物理学,对实验和合作工作感兴趣。开始日期:2024年2月或2024年3月:4-5个月实验室:CEA-GRENOBLE/PHELIQS/NPSC:www.pheliqs.fr/pages/npsc/presentation.aspx Contact.aspx联系人:通过电子邮件发送您的申请(包括CV)至:
purcell增强量子点(QD)单光子发射和设备亮度的增加,已经证明了各种类型的微腔。在这里,我们提出了第一个实现截断的高斯形状的微腔与QD的截断。实施基于湿化学蚀刻和外延半导体过度生长。实验研究了腔模式及其空间纤维,并与模拟很好地吻合。可以通过制造设计可重复控制具有6000张Q-因子的基本模式波长,而29 L EV的小极化分裂可以重复控制,从而使腔体适应了特定的QD。最后,通过温度调节对腔内QD的过渡进行调节和关闭共振。在共振上减少了一个以上的因子减少的衰减时间清楚地表明purcell的增强,而G(2)(0)¼0.057的二阶相关测量结果证明了QDS单光子特性得以保留。
先进纳米材料因其出色的光电特性,受到学术界和工业界越来越多的关注(Liu et al.,2020)。近年来,人们致力于开发高性能纳米材料,这使得其在广泛的光电应用中具有巨大潜力(Kong et al.,2021;Niu et al.,2021),特别是在发光二极管 (LED) 和太阳能电池 (SC) 方面。我们非常高兴地推出这期题为“用于发光二极管和太阳能电池的先进纳米材料”的特刊。本期特刊从不同角度强调了材料-器件研究的主要意义,结合了现代实验方法和理论模拟。我们从这个令人兴奋的领域收集了 10 篇特色文章,涵盖了用于 LED 和 SC 开发的先进纳米材料的新兴概念、策略和技术。简化的有机 LED(OLED)结构和可行的制造工艺在照明中起着关键作用。 Xu 等人结合了超薄非掺杂发射纳米层(0.3 纳米),展示了低效率滚降和结构简单的 OLED。同时,Xie 等人通过使用含硼和氮原子的分子作为客体发射极,开发了溶液处理的蓝色热激活延迟荧光 OLED,其半峰全宽较窄为 32 纳米,获得高色纯度 OLED。另一方面,开发新型溶液处理的空穴注入材料对于高性能 OLED 至关重要。Zhu 等人合成了二硫化钼量子点(MoS 2 QDs)并展示了具有混合聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸盐)(PEDOT:PSS)/QDs 空穴注入层的绿色磷光 OLED。采用PEDOT:PSS/MoS 2 空穴注入层的OLED最大电流效率为72.7 cd A −1,比单一PEDOT:PSS的OLED高28.2%,表明以硫化物QD作为空穴注入层是实现高效OLED的有效方法。GaN基LED也是很有前途的照明和显示设备。Zhang等人从实验和数值两个方面系统地研究了台面尺寸减小对InGaN/GaN LED两个横向维度的影响,为设备小型化提供了见解。而Lu等人制作并展示了各种尺寸的应变减小微型LED,并研究了尺寸对光学特性和量子阱铟浓度的影响。他们的工作为实现微型LED的高功率性能提供了经验法则。另一方面,Liu等人对GaN基LED进行了系统的研究,提出了一种新的方法来降低应变,提高LED的效率。采用氢化物气相外延与激光剥离技术联合制备缓冲层,在双抛光蓝宝石衬底上制备了厚度约为250 μm的2英寸自支撑GaN衬底,为高功率GaN基器件提供了一条途径。
PPNT – 患者路径和导航团队 HSWT – 医院社工团队 IVI – 静脉输液 IVAB - 静脉抗生素 OAB - 口服抗生素 PVAD – 外周静脉通路装置 S/C – 皮下 IM – 肌肉注射 OD、BD、TDS、QDS – 每日一次、每日两次、每日三次、每日四次 PRN – 应要求给予,根据需要给予 STAT – 立即给予,一次性剂量 TWOC – 无需导管试用 TTO – 取出 – 带回家的药物 POC – 护理包 STP – 短期安置 DNACPR – 请勿尝试心肺复苏 Ca – 癌症 COPD – 慢性阻塞性肺病 ETOH – 乙醇或酒精 PE – 肺栓塞 AKI – 急性肾损伤 CKD – 慢性肾病 IPET – 综合姑息治疗和终末期生命团队 CCOS – 重症监护外展服务 CNS – 临床护理专家 具体学习机会
荧光纳米颗粒(NP)已证明在生物分析和生物成像中使用了吸引力。1,2与传统的分子标签相比,NP可以具有许多优势,包括高度提高亮度和增强的光稳定性。NP的另一个关键优势是,发射材料受到保护,免受使光学特性对复杂生物学环境不敏感的环境。通常,NP在生物系统中也显示出低倾向或定位的倾向。受这些潜在优势的动机,已经报道了许多不同类型的纳米颗粒。以非常一般的方式,可以将它们分为基于无机的或有机的,其中无机NP在早期就更具统治性。无机纳米颗粒中有许多变化3,4,包括众所周知的量子点(QDS)5 - 8和UpConversion NP。9,10荧光NP,其中来自有机分子和材料的吸收和发射茎包括基于分子染料(纯或嵌入在基质材料中)的NPS,11种共轭聚合物,12,13和无态碳材料(碳核心)。14,15
bd,每天两次; CRCL,ML/min的肌酐清除率; DPP-4,二肽基肽酶-4; EGFR,ML/min/1.73m 2的估计肾小球过滤率; ESKD,末期肾脏疾病; G6PD,葡萄糖-6-磷酸脱氢酶; GFR,ML/min/1.73m 2的肾小球过滤率;胃肠道,胃肠道; GIP,葡萄糖依赖性胰岛素多肽; GLP-1,胰高血糖素样肽-1;高清,血液透析; ir,立即释放;最大,最大值;男子2,多种内分泌肿瘤综合征2型; MR,修改后的释放; MTC,甲状腺甲状腺癌; OD,每天一次; PD,腹膜透析; PO,口头; QD,每天四次; SC,皮下; SGLT2,钠 - 葡萄糖共转运蛋白2; TD,一天三次; URTI,上呼吸道感染; XR,扩展版本
图2:a)沉积在银上的J-聚集膜的石版画区的暗场显微镜图像。该图案的设计包含圆形光漂白区域(CPA),直径范围为1至40 µm。相邻漂白区域之间的最小分离距离为20 µm,可以彼此隔离。样品中重复数十倍的模式,以测试实验结果的重复性。在40 µM CPA中,我们代表激光激发和视野。b)CPA的素描被聚焦激发的中心照亮。激光激发后,QD会因刺激模式在样品平面中传播而衰减。孵化的区域对应于激发发射器的体积,我们为模拟设定了非零的化学潜力。