密钥交换协议允许事先互不相识的双方共享一个公共加密密钥,以便随后交换对称加密消息。当前的密钥交换协议基于公钥加密。因此,它们的安全性基于知道公钥、找到私钥或用公钥加密的密钥的难度。随着量子计算机的出现,当前的非对称算法将不再提供这样的保证 [1]。量子密钥分发协议(量子密钥分发,QKD)的安全性基于量子物理的特性,特别是不可克隆定理 [2];该定理指出,不可能完美地克隆粒子(量子比特)的量子态。如果攻击者试图读取两个参与者交换的量子比特(通常是光子的偏振态),那么她必然会修改量子态,因此可以即时检测到。然而,QKD 的局限性之一仍然是双方可以交换的最大地理距离,目前为几百公里 [3]。ETSI 提出了 QKD 网络的协议标准 [4]。在这里,我们建议使用 ProVerif 工具对其进行正式验证。
Quantum-SAFE云服务(QCS)将量子安全服务嵌入ICT云平台的基本组件中,其中Quantum Secure Communication在其整体ICT体系结构中起着至关重要的作用,以基于统一的量子密钥生成和管理能力
量子技术近年来已经取得了重大进步Cao等。(2022); Illiano等。(2022);辛格等。(2021)。量子计算机的计算能力的增加正在危害用于在用户之间分配密钥的加密算法,包括像HTTPS一样广泛的协议。尽管如此,量子技术还提供了这些算法的替代方法:量子密钥分布(QKD)协议允许两个节点通过量子通道在键上达成一致,以至于窃听者无法在未检测到键的情况下获得窃听器获得键。然后可以使用此密钥来加密两个节点之间的通信。由于所需材料的高成本和技术缺乏成熟,目前实施的QKD网络的数量非常小。因此,研究人员必须采用模仿量子网络行为的模拟器。根据研究范围Aji等人的范围有多种选择。(2021):一些模拟器专注于表示量子通道的物理层,而另一些模拟器则允许用户定义整个网络,在该网络之间可以在其中进行节点之间执行QKD。为Python编写的模拟器“ Qunetsim”和“ NetSquid”是最受欢迎的选择。网络模拟器NS-3由于其细节水平和自定义功能,因此在科学和教育社区中广泛使用。存在针对NS-3实现的模块,用于量子网络的仿真,名为qkdnetsim Mehic等。这个级别的(2017年),是由奥斯特拉瓦技术大学的研究人员开发的。qkdnetsim比其他模拟器的优点来自NS-3的粒度:此模拟器允许每个组件的深度配置,并且通过模拟网络发送的数据包已充分定义,包括所有涉及所有协议的标题。
基于物理属性的程序也可以被视为物理安全原语。这些原语基于基本的物理程序,这些程序反过来也可以用数学来描述,类似于传统的加密原语。与后者的主要区别在于,除了一些(可能非常复杂的)纯计算成分外,某些物理模型的特定数学描述在其定义中起着重要作用。虽然在数学安全原语的情况下,必须保证抽象的数学计算和通信由真实的计算机忠实地表示,但在物理安全子系统的情况下,物理模型的实现有效性也需要得到证明。典型的基本物理过程(“物理原语”)是纯量子密钥分发(通过真实的经典后处理通道)或物理层加密(通过有线 tqp 通道)
受到经典加密硬件的方法的启发,我们考虑在QKD安全评估的背景下使用攻击等级。为了说明这种方法的相关性,我们对两种不同的攻击策略进行了针对饱和攻击的CV-QKD的实验漏洞评估。第一个策略依赖于通过执行大型连贯的位移来诱导检测器饱和度。该策略在实验上具有挑战性,因此转化为高攻击评级。我们还提出并在实验上展示了第二种攻击策略,该策略仅包括用外部激光饱和检测器。我们获得的低评分表明,这种攻击构成了实用CV-QKD系统的质威胁。这些结果强调了将理论安全考虑与基于攻击评级相结合的漏洞分析的好处,以指导实用QKD系统的设计和工程达到最高可能的安全标准。
印度摘要:在当今不断发展的通信环境中,确保数据安全至关重要。量子密码学提供了一种可行的补救措施,它使用量子力学来创建本质上安全的通信通道。本文通过广泛的文献综述阐明了量子密码学的理论基础和实际应用。分析了量子密钥分发 (QKD) 等关键概念以评估其有效性。QKD 利用量子原理分发密钥来确保牢不可破的加密。凭借其出色的抵御窃听攻击的能力,QKD 提供了可以跨越远距离的安全通道。实际实现的进步有助于抗量子加密算法的开发。此外,本文还强调了有关 QKD 对安全通信的影响的问题和未解答的研究问题。
• 偏振纠缠 实现 • 宽带和单独信道纠缠 实现 • 下一步 基于纠缠的 QKD 多用户 QKD 全光纤集成、基于 WDM 的纠缠光子源,面向多用户 QKD
引言如今,点对点量子密钥分发 (QKD) 已经成为商业现实。商用 QKD 系统的范围通常在光纤上为 100 公里。学术系统和新协议可以达到数百公里 1、2。中国墨子号卫星已经展示了与低地球轨道卫星的自由空间 QKD 链路 3。然而,单个点对点链路的范围仍然受到链路功率损耗的限制 4。为了扩展 QKD 的实际应用,有必要将范围扩展到全球 QKD 并提供更复杂的网络拓扑 5。随着量子中继器等新技术的出现,这种扩展的多功能性可以通过所谓的可信节点 (TN) 6 实现。在 TN 中,量子信号被测量并转换为经典信号。生成一个新的经典信号,转换为量子,然后发送到下一个节点。 TN 可用作中继,提供长距离 QKD,也可用作交换机,提供复杂的拓扑 5 。然而,由于 TN 包含经典信号,原则上可以被复制,因此 TN 内不存在量子安全性。必须信任 TN 并对其进行物理保护,以避免数据泄露 5 。因此,出于安全目的,TN 代表了完整的端到端 QKD 传输中的薄弱环节。在本文中,术语“长距离 QKD”是指全球 QKD,即在地球上任意两点之间部署和实施 QKD 的能力。最近,英国知识产权局向 Arqit Ltd. 公司授予了专利号 GB2590064(https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064)我们还将本专利中描述的协议称为 ARQ19 协议。本专利旨在提供没有 TN 的长距离 QKD。根据这些说法,现在可以使用不受信任的卫星实现全球 QKD。这将改变 QKD 的游戏规则。因此,调查这些说法显然很重要。不幸的是,据我们所知,它们尚未在任何科学期刊上通过随附的公开披露得到验证。因此,我们的分析基于已发布的 ARQ19 专利和 Arqit 在美国证券交易委员会 (SEC) 提交的 20-F 年度报告 (https://www.sec.gov/Archives/edgar/data/0001859690/000110465921150276/arqq-20210930x20f.htm)。本报告将
尽管 QKD 链路可以达到传统方式无法达到的安全级别,但由于光纤损耗会随着距离的增加而呈指数级增长,因此 QKD 链路在全球范围内的实施面临着关键限制。由于量子中继器技术不够成熟,地面 QKD 装置的可达距离最多只能限制在几百公里 [1-3]。因此,卫星中继被认为是实现洲际链路非常有前途的解决方案 [4],多年来,已发表了多项关于自由空间卫星 QKD 的理论和实验可行性研究 [5-11]。然而,特别是对于卫星到地面的链路,大气湍流对信号传播的影响需要优化单模光纤 (SMF) 中的光耦合,这对于与地面站连接必不可少。
1 德国电信 T-Labs,德国柏林 10781; brauermax@gmx.de(MB); ralf-peter.braun@t-online.de (R.-PB) 2 马德里理工大学 DLSIIS 和计算机模拟中心,28660 马德里,西班牙; rafaelj.vicente@upm.es(RJV); j.saezdeburaga@upm.es(JSB); ruben.bmendez@upm.es(RBM); vicente@fi.upm.es (VM) 3 波兹南超级计算和网络中心,61-139 波兹南,波兰; prydlich@man.poznan.pl 4 慕尼黑研究中心,华为技术杜塞尔多夫有限公司,德国慕尼黑 80992; hans.brunner@huawei.com (HHB); fred.fung@huawei.com(FF); momtchil.peev@huawei.com (MP) 5 电话 gCTIO/R&D,28050 马德里,西班牙; antonio.pastor@telephony.com(美联社); diego.r.lopez@telefonica.com (DRL) * 通信地址:marc.geitz@telekom.de (MG); johnpedro.brito@upm.es (JPB);电话:+49-1715408754(MG); +34-910673073 (日本)