11.1.5.4.3 O.TPath................................................................................................................................... 64 11.1.5.4.4 O.AuthFail................................................................................................................................... 64 11.2 TOE 自我保护......................................................................................................................................................... 65 11.2.1 标识...................................................................................................................................................... 65 11.2.2 介绍...................................................................................................................................................... 65 11.2.3 安全问题定义...................................................................................................................................... 65 11.2.3.1 资产、TSF 数据、用户、主体、客体和安全属性............................................................................. 65 11.2.3.1.1 资产和 TSF 数据............................................................................................................................. 65 11.2.3.1.2 用户和主体..................................................................................................................................... 65 11.2.3.1.3 客体................................................................................................................................................ 65 11.2.3.1.4 安全属性 ...................................................................................................................................... 65 11.2.3.2 威胁 ................................................................................................................................................ 66 11.2.3.2.1 T.PhysAttack 物理攻击 ................................................................................................................ 66 11.2.3.3 假设 ................................................................................................................................................ 66 11.2.3.3.1 A.SecureOp ................................................................................................................................ 66 11.2.4 安全目标 ............................................................................................................................................. 66 11.2.4.1 TOE 的新目标 ................................................................................................................................ 66 11.2.4.1.1 O.PhysProt 物理保护 ................................................................................................................ 66 11.2.4.2 TOE 的细化目标........................................................................................................... 66 11.2.4.2.1 O.EMSec 发散安全 ........................................................................................................... 66 11.2.4.3 针对环境的细化目标 ............................................................................................................. 67 11.2.4.3.1 OE.SecureOp 安全操作环境 ............................................................................................. 67 11.2.4.4 细化的理由 ............................................................................................................................. 67 11.2.4.4.1 O.EMSec ........................................................................................................................... 67 11.2.4.4.2 OE.SecureOp .................................................................................................................... 67 11.2.4.5 安全目标的理由 ............................................................................................................. 67 11.2.4.5.1 T.PhysAttack .................................................................................................................... 67 11.2.4.5.2 A.SecureOp ........................................................................................................................... 67 11.2.5 安全要求 .......................................................................................................................................... 68 11.2.5.1 简介 ............................................................................................................................................. 68 11.2.5.2 对 TOE 的新要求 ............................................................................................................................. 68 11.2.5.3 对 TOE 的细化要求 ...................................................................................................................... 68 11.2.5.4 SFR 依赖性原理 ............................................................................................................................. 69 11.2.5.5 安全要求的原理 ............................................................................................................................. 69 11.2.5.5.1 原理表 ................................................................................................................................ 69 11.2.5.5.2 O.PhysProt ................................................................................................................................ 69 11.2.5.5.3 O.EMSec ........................................................................................................................... 69 11.3 交付后的配置和重新个性化 ......................................................................................................... 69 11.3.1 标识................................................................................................................................................ 69 11.3.2 介绍................................................................................................................................................... 69 11.3.2.1 概述................................................................................................................................................... 69 11.3.2.2 生命周期................................................................................................................................... 70 11.3.3 安全问题定义...................................................................................................................................... 70 11.3.3.1 资产、TSF 数据、用户、主体、客体和安全属性............................................................................. 70 11.3.3.1.1 资产和 TSF 数据............................................................................................................................. 70 11.3.3.1.2 用户和主体............................................................................................................................ 70 11.3.3.1.3 客体............................................................................................................................................ 71 11.3.3.1.4 安全属性......................................................................................................................................... 71 11.3.3.2 威胁 ................................................................................................................................................ 71 11.3.3.2.1 T.Initialize TSF 数据初始化受损 ........................................................................................ 71 11.3.3.3 假设 ............................................................................................................................................. 71 11.3.3.3.1 A.SecureOp ............................................................................................................................. 71 11.3.4 安全目标 ............................................................................................................................................. 72 11.3.4.1 TOE 的新目标 ............................................................................................................................. 72 11.3.4.1.1 O.Personalization 对个性化的访问控制 ............................................................................. 72 11.3.4.1.2 O.Pristine 首次交付后的完整性证明 ............................................................................................. 72 11.3.4.2 环境的新目标 ............................................................................................................................. 72 11.3.4.2.1 注意事项 ................................................................................................................................................ 72 11.3.4.2.2 OE.Initialize 初始化的安全环境 ................................................................................................ 72 11.3.4.3 改进的理由 ................................................................................................................................ 72 11.3.4.3.1 A.SecureOp ................................................................................................................................ 72 11.3.4.4 安全目标的理由 ............................................................................................................................. 73
• 偏振纠缠 实现 • 宽带和单独信道纠缠 实现 • 下一步 基于纠缠的 QKD 多用户 QKD 全光纤集成、基于 WDM 的纠缠光子源,面向多用户 QKD
Quantum-SAFE云服务(QCS)将量子安全服务嵌入ICT云平台的基本组件中,其中Quantum Secure Communication在其整体ICT体系结构中起着至关重要的作用,以基于统一的量子密钥生成和管理能力
用于安全密钥生成的量子协议的设计面临许多挑战:一方面,它们需要在实验实现方面实用。另一方面,它们的理论描述必须足够简单,以便能够针对所有可能的攻击进行安全性证明。通常,这两个要求是相互冲突的,而差分相移 (DPS) QKD 协议就是一个很好的例子:它被设计为可通过当前的光通信技术实现,而对于该协议,代价是许多标准安全性证明技术不适用于它。在这项工作中,我们首次给出了 DPS QKD 针对一般攻击(包括有限尺寸效应)的完整安全性证明。该证明结合了量子信息论、量子光学和相对论技术。我们首先给出一个 QKD 协议的安全性证明,其安全性源于相对论约束。然后我们表明 DPS QKD 可以被表述为相对论协议的一个实例。此外,我们表明,对 DPS 协议的一致攻击实际上比集体攻击更强。
ITU-T SG13,SG17,ETSI和其他SDO一直在标准化QKDN的许多方面,包括QKDN体系结构,密钥管理,安全要求和安全证明等。但是,这些SDO的可交付成果集中在QKDNS的单个提供商上,尽管最近在ETSI ISG-QKD [ETSI GS QKD 020]和ITU-T SG13 [ITU-T Y.QKDN_IWFR] [ITU-t Y.-T Y.QKDN_IIWRQ]中考虑了互动方面。y.qkdn_iwfr和y.qkdn-iwrq在ITU-T SG13中分别研究了互动框架和要求。尽管事实是,不同QKD提供商之间以及两个不同QKDN运算符之间的互助方面,但这是QKDN网络的大规模开始,可以为端到端QKD服务提供最终用户的大型QKD服务,并在最终用户不在家庭网络等领域时提供QKD服务。因此,QKDN的联合会共享
SDN 被定义为一种控制框架,它通过分离数据平面和控制平面来支持网络功能和协议的可编程性,而数据平面和控制平面目前在大多数网络设备中是垂直集成的。SDN 提出了一种逻辑集中式架构,其中控制实体(SDN 控制器)负责通过应用程序编程接口 (API) 提供网络资源的抽象。这种抽象使 SDN 能够执行网络虚拟化,即对物理基础设施进行切片并创建多个共存的网络切片(虚拟网络),独立于底层无线或光学技术和网络协议。理想情况下,SDN 架构基于单个控制域,该控制域由多个网络节点组成,这些节点采用不同供应商提供的不同技术,并通过标准接口进行控制。对于 QKDN 的互通场景,需要多域网络编排,因为每个域可以由不同的供应商提供,每个域都可以通过其自己的客户 SDN 控制器进行独立控制。本建议书提出了 SDN 编排和虚拟化的框架,该框架允许规范化控制,从而允许在抽象级别上组合跨多个域的端到端配置服务。编者注:随着工作的进展,将添加有关两个 QKDN 提供商之间 QKDNS 互通的 SDN 控制概念的进一步描述
当纠缠量子态的分布特别困难时,有限尺寸效应会产生实际影响。例如,考虑在地球表面相距甚远的用户之间使用 QKD 的问题。墨子号卫星实验 [ 26 ] 试图通过使用卫星将纠缠光子对分发到相距 1120 公里的两个地面站来解决这一问题。然而,将纠缠光子对从太空发送到地球非常困难。在墨子号实验中,必须经过几个晚上的好天气,地面站才能积累出 3100 大小的筛选块。地面站需要容忍的错误率为 4.51%。参考文献 [ 12 ] 对此数据进行了最先进的安全性分析,并得出结论:安全级别优于 10 − 6 左右时根本不会生成密钥,而安全级别为 10 − 6 时仅可提取六位密钥。本例中实现的输出大小和安全级别不足以满足加密应用的要求。这为本文提供了动机。是否有 QKD 协议和安全证明能够实现小块大小与输出大小和安全级别相结合,从而满足加密应用的要求?
抽象量子密钥分布(QKD)旨在提供一种在理论上安全的分发秘密密钥的方法。但是,实际设备可能不会遵循理论假设,这为窃听者提供了一个后门。单光子检测器被认为是QKD系统中最脆弱的部分。测量设备独立(MDI)协议提供了一种方法,可以通过在准备好的状态上共同引入不信任的继电器执行钟形测量来删除所有检测器侧通道。继电器也可以用作量子网络的中心节点,该网络允许量子通信无信任的继电器或点对点通信,这很难扩大。
引言如今,点对点量子密钥分发 (QKD) 已经成为商业现实。商用 QKD 系统的范围通常在光纤上为 100 公里。学术系统和新协议可以达到数百公里 1、2。中国墨子号卫星已经展示了与低地球轨道卫星的自由空间 QKD 链路 3。然而,单个点对点链路的范围仍然受到链路功率损耗的限制 4。为了扩展 QKD 的实际应用,有必要将范围扩展到全球 QKD 并提供更复杂的网络拓扑 5。随着量子中继器等新技术的出现,这种扩展的多功能性可以通过所谓的可信节点 (TN) 6 实现。在 TN 中,量子信号被测量并转换为经典信号。生成一个新的经典信号,转换为量子,然后发送到下一个节点。 TN 可用作中继,提供长距离 QKD,也可用作交换机,提供复杂的拓扑 5 。然而,由于 TN 包含经典信号,原则上可以被复制,因此 TN 内不存在量子安全性。必须信任 TN 并对其进行物理保护,以避免数据泄露 5 。因此,出于安全目的,TN 代表了完整的端到端 QKD 传输中的薄弱环节。在本文中,术语“长距离 QKD”是指全球 QKD,即在地球上任意两点之间部署和实施 QKD 的能力。最近,英国知识产权局向 Arqit Ltd. 公司授予了专利号 GB2590064(https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064)我们还将本专利中描述的协议称为 ARQ19 协议。本专利旨在提供没有 TN 的长距离 QKD。根据这些说法,现在可以使用不受信任的卫星实现全球 QKD。这将改变 QKD 的游戏规则。因此,调查这些说法显然很重要。不幸的是,据我们所知,它们尚未在任何科学期刊上通过随附的公开披露得到验证。因此,我们的分析基于已发布的 ARQ19 专利和 Arqit 在美国证券交易委员会 (SEC) 提交的 20-F 年度报告 (https://www.sec.gov/Archives/edgar/data/0001859690/000110465921150276/arqq-20210930x20f.htm)。本报告将
摘要:量子密钥分发 (QKD) 是目前以信息理论安全方式远距离生成密钥的成熟方法,因为 QKD 的保密性依赖于量子物理定律而不是计算复杂性。为了实现 QKD 的工业化,需要低成本、大规模生产和实用的 QKD 装置。因此,发送器和接收器各自组件的光子和电子集成目前备受关注。我们在此介绍一种高速 (2.5 GHz) 集成 QKD 装置,其特点是硅光子发射芯片可实现高速调制和精确状态准备,以及采用飞秒激光微加工技术制造的铝硼硅酸盐玻璃中偏振无关的低损耗接收器芯片。我们的系统实现的原始误码率、量子误码率和密钥速率相当于基于分立元件的更复杂的最先进装置 [1,2]。