摘要:量子密钥分发 (QKD) 是目前以信息理论安全方式远距离生成密钥的成熟方法,因为 QKD 的保密性依赖于量子物理定律而不是计算复杂性。为了实现 QKD 的工业化,需要低成本、大规模生产和实用的 QKD 装置。因此,发送器和接收器各自组件的光子和电子集成目前备受关注。我们在此介绍一种高速 (2.5 GHz) 集成 QKD 装置,其特点是硅光子发射芯片可实现高速调制和精确状态准备,以及采用飞秒激光微加工技术制造的铝硼硅酸盐玻璃中偏振无关的低损耗接收器芯片。我们的系统实现的原始误码率、量子误码率和密钥速率相当于基于分立元件的更复杂的最先进装置 [1,2]。
在量子密钥分发 (QKD) 中,两个远程方旨在根据量子力学定律建立信息理论秘密密钥。与常用的传统加密方案相比,QKD 是前向安全的,即生成时安全的密钥无法在未来重建,并且不依赖于对窃听者的计算能力或解决复杂数学问题的有效算法的假设。因此,即使在可扩展量子计算机存在的情况下,QKD 也可以进行秘密通信。要执行量子密钥分发,需要物理实现、描述双方必须执行的步骤的协议和安全证明 - 这意味着在给定实际实现模型和一些合理假设的情况下找到安全密钥速率的下限。长期以来,这些假设之一是通信方可以交换无限长的密钥。当然,这只是理想化,在现实世界中并不成立。在本文中,我们分析了有限尺寸范围内通用离散调制连续变量量子密钥分发 (DM CV-QKD) 协议的安全性。我们使用 Renner 的有限尺寸安全性证明框架 [85] 来建立可组合安全性以抵御 iid 集体攻击。CV-QKD 协议依赖于测量连续量,例如存在于无限维希尔伯特空间中的量子态的位置和动量。因此,DM CV-QKD 协议有限尺寸安全性证明的主要挑战之一是正确处理这些无限维系统。我们引入并证明了一种新的抗噪能量测试定理,该定理有助于将交换信号的权重限制在有限维截止空间之外,并应用降维方法 [105] 严格考虑该截止对安全密钥速率的影响。虽然这种能量测试是我们安全性论证的一个组成部分,但我们强调,它本身就是一个有趣的结果,可能在量子计算和通信的各种情况下都很有用。在将 Renner 的框架扩展到无限维边信息之后,我们最终应用了数值安全性证明框架 [19, 110] 来计算不同理论上有趣且实际相关的场景的安全密钥率的严格下限。本安全性证明的灵活结构允许根据实验者和用户的需求进行调整。例如,与许多现有的证明技术相比,我们的方法可以将后选择纳入
a 印度泰米尔纳德邦印度斯坦科技学院电子与通信工程系 b 印度泰米尔纳德邦韦拉马尔工程学院计算机科学与工程系 c 印度政府青年事务和体育部拉吉夫·甘地青年发展研究所 (RGNIYD) 计算机科学系,印度泰米尔纳德邦斯里佩鲁姆布杜尔 d 德克萨斯大学二叠纪盆地分校计算机科学系主任兼教授,网络安全中心主任,4901 E. University Blvd.,敖德萨,TX 79762,美国,与约旦大学阿卜杜拉二世国王信息技术学院,安曼 11942,约旦和北京科技大学计算机与通信工程学院,北京 100083,中国,阿米蒂大学名誉杰出教授,北方邦诺伊达 201301,印度 e 卡纳塔克邦 MS Ramaiah 应用科学大学计算机科学与工程系f IEEE 高级会员,德克萨斯大学二叠纪盆地分校计算机科学系,4901 E. University Blvd.,Odessa,TX 79762,美国
量子密钥分布(QKD)是通信技术的新方向。QKD建立了两个当事方(通常称为Alice和Bob)之间的安全连接,其中量子力学定律提供了有目的的通道的可靠性,其中最重要的是无关定理[1]。从长远来看,QKD基于计算数学函数的复杂性,QKD比常见的密码系统提供了更安全的连接。第一个提出的方案是BB84 [2],其中秘密键是通过使用两个正交光子极化碱基来生成的。从那时起,研究了许多方案和实验方案以改善QKD系统的参数并扩大其应用的可能性[3]。尤其是,自由空间QKD由于其灵活性和移动性而积极开发,可用于移动设备[4],卫星通信[5]和物联网(IoT)[6]。与光纤纤维相比,自由空间QKD尚未在商业系统中广泛使用。这些系统的主要局限性是高斯光束偏离由大气湍流和天气条件引起的原始传播方向的偏差。为解决此问题,目前使用了具有较大入口或特殊校正系统的伸缩系统,这增加了QKD系统的复杂性,重量和成本。作为梁偏差补偿的另一种方法,可以使用光涡旋,根据许多研究[7,8],在湍流气氛中更稳定。这些问题将在本文中探讨。光涡流或具有轨道角动量(OAM)的光辐射在其中心具有空间奇异性,相位保持不确定,并且沿着梁的内边缘从0到2π不等[9]。这些过渡的数量对应于涡旋的拓扑电荷。目前,已经在QKD系统中研究了涡流束,特别是作为编码信息的基础[10]和相对于轨道动量的通道[11]。但是,在自由空间QKD中具有湍流气氛的高斯和涡流梁的传播及其对此类系统参数的影响之间没有比较。此外,没有对相位调节保存进行的实验研究,并对涡流束进行了额外的调节和解调,这对于将大气通道与光学纤维有效整合是必不可少的。
摘要 —天空地一体化网络(SAGIN)是第六代(6G)通信中最有前途的先进范式之一。SAGIN 可以为互联应用和服务支持高数据速率、低延迟和无缝网络覆盖。然而,随着量子计算机容量的不断增加,SAGIN 中的通信面临着巨大的安全威胁。幸运的是,用于在 SAGIN 中建立安全通信的量子密钥分发(QKD),即 SAGIN 上的 QKD,可以提供信息论安全性。为了最大限度地降低具有异构节点的 SAGIN 中的 QKD 部署成本,本文提出了一种使用随机规划的 SAGIN 上的 QKD 资源分配方案。所提出的方案通过两阶段随机规划(SP)制定,同时考虑了安全要求和天气条件等不确定性。在大量实验下,结果清楚地表明,所提出的方案可以在各种安全要求和不可预测的天气条件下实现最优部署成本。索引词——量子密钥分发、空地一体化网络、资源分配、随机规划。
光子对源的工程设计:• SPDC 过程(光谱、共线、偏振等)• 焦点参数(光纤耦合、配对率)• 多个过程的重叠(偏振纠缠!)• 不同 DoF 中的纠缠
推荐机制:FrodoKEM-976([5] 中的第 2.5 节)、FrodoKEM-1344([5] 中的第 2.5 节)和 Classic McEliece,其参数在 [14] 第 7 节中属于第 3 和第 5 类,在密码学上适合长期保密保护,符合本技术指南所针对的安全级别。这是一个相当保守的评估,为未来可能的密码分析进展留出了相当大的安全余地。本文档的未来修订版可能会评估其他参数选择和 PQC 方案在技术上是否合适。FrodoKEM 未被列入 NIST PQC 项目第三轮的决赛入围者之列,而是作为备选方案。这主要是出于对该方案效率的考虑;其安全性毋庸置疑。因此,BSI 仍然推荐 FrodoKEM 作为 PQC 方案,具有较高的安全余地,可抵御未来的攻击。更多详细信息请参见 [12]。
部署量子信道和经典数据信道可以共存的光网络对于在网络“运营商”基础设施中采用 QKD 网络至关重要。当网络运营商考虑将 QKD 网络引入其现有网络时,有几种实施方案可供选择,例如,将量子信道和经典数据信道集成在一根光纤中或将它们分离在不同的光纤中。将量子信道和经典数据信道集成在一根光纤中有两个主要技术问题:传输光功率和信道可实现的链路距离之间的差异。网络运营商可以选择将这些信道分开,将量子信道置于 QKD 网络中,将经典数据信道置于光传输网络 (OTN) 中。这可以优化 QKD 网络在光纤丰富的环境中的性能。在这种分离的情况下,在软件定义网络 (SDN) 架构的设计原则下,QKD 网络和 OTN 可以由不同的 SDN 控制器控制。
量子密钥分发依赖于在量子层面上创建、传输和检测信号。如果用于传输的网络也使用功率大得多的经典信号,则很难实现这一点。另一方面,量子传输既不能放大也不能再生——至少在没有量子中继器的情况下是这样,而这在现有技术下是不可行的——这意味着量子通信的覆盖范围有限,需要借助可信中继器来增加距离。为了优化量子信号与经典通信在网络上的传输——无论它们是否共享相同的物理介质——并管理更长距离所需的密钥中继,必须集成 QKD 系统,以便它们可以与网络控制通信并从中接收命令。这些网络感知的 QKD 系统必须在物理层面集成(例如,为量子信道分配频谱、动态更改对等点或使用新的光路等),但也必须在逻辑上连接到管理架构。为了实现这种集成,必须向网络控制器描述 QKD 设备所需的功能。 YANG [1] 和 [2] 是用于描述网络元素的主要建模语言。任何新元素、服务或功能的定义通常都与 YANG 模型相结合,以便更快地集成到管理系统中。
QKD 是一种可证明安全的通信机制,它利用量子力学的特性在双方之间共享随机生成的对称加密密钥。随机密钥只有端点方知道,第三方窃听者无法截取。这与传统的公钥加密不同,后者依赖于某些数学函数的计算难度。随着量子计算的出现,这些函数可以更快地逆转用于生成密钥的函数。