所有航空 LiDAR 系统的核心都是用于直接地理参考的精确定位系统 AEROcontrol。使用不同的免出口 IMU,AEROcontrol 可以精确测量传感器或传感器星座的位置和飞行姿态,频率高达 600 Hz。该系统为所有集成传感器提供一个操作员界面。与 AEROoffice 结合使用,可提供简化的数据工作流程和内置杠杆臂校正,以提高所有航空测绘应用的生产率。特点:• 一个紧凑的系统,多种应用(为机载、陆地、水面和铁路应用实施特殊的前向/后向卡尔曼滤波算法)• 544 通道 GPS、GLONASS、BEIDOU、GALILEO、IRNSS、QZSS 支持,支持 TERRASTAR • 基于测量级 FOG 和 MEMS 的 IMU,全部免出口 • IGI 精确调平 - 基于 IMU 的精确稳定支架控制
1. 引言 全球导航卫星系统 (GNSS) 和相关技术可为 2030 年可持续发展议程作出广泛贡献。GNSS 和地球观测数据目前被广泛应用于各个领域,包括测绘和测量、环境监测、精准农业和自然资源管理、灾害预警和应急响应、航空、海上和陆地运输,以及气候变化和电离层研究等研究领域。GNSS 应用提供了一种在保护环境的同时实现可持续经济增长的经济有效方式。当前的 GNSS 包括全球定位系统 (GPS)、全球导航卫星系统 (GLONASS)、北斗卫星导航系统 (BDS) 和欧洲卫星导航系统 (Galileo)。此外还有两个区域系统,即印度星座导航系统 (NavIC) 系统和准天顶卫星系统 (QZSS),以及旨在提高一个或多个 GNSS 质量(例如准确性、稳健性和信号可用性)的各种增强系统。除了 GNSS,地球观测卫星或通信卫星等其他空间技术在创造社会经济效益方面也发挥着关键作用。地球观测卫星能够持续详细地监测地球表面,为环境保护、资源管理和灾害响应提供宝贵的数据。它们有助于追踪森林砍伐、城市扩张和农业用地变化,并为管理水资源和缓解气候变化提供重要见解
太空飞行系列文章的一部分 历史 太空飞行史 太空竞赛 太空飞行时间线 太空探测器 月球任务 应用 地球观测卫星 间谍卫星 通讯卫星 军用卫星 卫星导航 太空望远镜 太空探索 太空旅游 太空殖民 航天器 机器人航天器 卫星 太空探测器 货运航天器 载人航天 太空舱 阿波罗登月舱 航天飞机 空间站 太空飞机 航天发射 太空港 发射台 一次性和可重复使用的运载火箭 逃逸速度 非火箭航天发射 航天类型 亚轨道 轨道 行星际 星际 星系际 空间组织列表 航天机构 太空部队 公司 太空飞行门户网站 卫星导航或 satnav 系统是一种使用卫星提供自主地理定位的系统。覆盖全球的卫星导航系统称为全球导航卫星系统 (GNSS)。截至 2023 年[更新],有四个全球系统投入运营:美国的全球定位系统 (GPS)、俄罗斯的全球导航卫星系统 (GLONASS)、中国的北斗卫星导航系统[1] 和欧盟的伽利略。[2] 正在使用的区域导航卫星系统是日本的准天顶卫星系统 (QZSS),这是一种基于 GPS 卫星的增强系统,可提高 GPS 的准确性,卫星导航独立于 GPS 计划于 2023 年实现[3],以及印度的区域导航卫星
A2AD 反介入区域拒止 AAM 先进空中机动 ADAS 自动驾驶辅助系统 ADC 模数转换器 A-GNSS 辅助 GNSS AoA 到达角 AI 人工智能 AR 增强现实 CAS 商业认证服务 COTS 商用现货 CSAC 芯片级原子钟 D2D 设备到设备 DL-AoD 下行链路出发角 DL-TDOA 下行链路到达时间差 DME 测距设备 EASA 欧盟航空安全局 EDA 欧洲防务局 EKF 扩展卡尔曼滤波器 E-LORAN 增强型远程导航 EU 欧洲联盟 EUSPA 欧盟太空计划署 GEO 地球静止轨道 GDP 国内生产总值 GNSS 全球导航卫星系统 HAS 高精度服务 ICD 接口控制文件 IoT 物联网 IF 中频 INS 惯性导航系统 KF 卡尔曼滤波器 LANS 月球增强导航服务 LEO 低地球轨道 LCRNS 月球通信中继和导航系统 LITS 线性离子阱 LNA 低噪声放大器 LNSS 月球导航卫星系统 LORAN 远程导航 MAAS 海上自主表面 MCS 主控站 MEMS 微机电系统 MEO 中地球轨道多 RTT 多往返时间行程 NAVAC 导航创新支持计划咨询委员会 NLoS 非视距 OSNMA 开放服务 - 导航消息认证 PKF 粒子滤波器 PNT 定位导航和授时 PPP 精密单点定位 PRS 公共监管服务 PTF 精密授时设施 QKD 量子密钥分发 QoS 服务质量 QZSS 准天顶卫星系统 RAIM 接收器自主完整性监测 RF 射频
美国盟友出于军事和经济目的不断增加太空活动,这为华盛顿带来了机遇和风险。机遇在于,盟友的太空资产可以为联军行动提供支持。例如,英国的军事通信卫星 (SATCOM)(被称为天网)为北大西洋公约组织 (NATO) 在阿富汗的行动做出了贡献。1 日本的定位、导航和授时 (PNT) 服务(被称为准天顶卫星系统 (QZSS))可以增强美国在印度-太平洋地区的全球定位系统 (GPS)。2 然而,这些太空资产也容易受到对手恶意活动的攻击。中国、俄罗斯、朝鲜和伊朗等美国对手的反太空能力正在迅速增长。3 因此,盟友们期望美国——这个占主导地位的太空大国——在太空中发挥威慑对手的作用。换句话说,盟友们期待华盛顿致力于扩大太空威慑。 4 延伸威慑——旨在防止对手对第三方采取有害行动——几十年来一直是美国的主要外交政策工具。通过向盟友提供核保护伞和诱饵部队,美国可以遏制敌人并在冷战期间维持“长期和平”。5 在此期间,美国延伸威慑战略的核心是美国将对任何针对其盟友的侵略行为(无论是常规还是核武器)作出有力回应。然而,在战争领域不断扩大的时代,新兴技术使各国能够在不引发全面冲突的情况下推进其地缘政治利益,威慑理论是否仍然适用尚不确定。在 9/11 恐怖袭击事件发生后,人们对威慑对抗不对称威胁的效用产生了怀疑,《纽约时报》社论认为“威慑的逻辑超越了任何特定的时代或敌人。” 6 在此背景下,本文旨在回答延伸威慑理论是否可以超越传统领域而拓展到太空领域这一研究问题。
人工智能算法在 GNSS 中执行的可能性 Darshna Jagiwala(1)、Shweta N. Shah(2) (1) 女科学家,DST (2) 助理教授,SVNIT,印度 摘要 大量研究验证了在全球导航卫星系统 (GNSS) 领域使用人工智能 (AI) 算法的机会。实现智能有两种方式:一种是通过机器学习 (ML),另一种是通过深度学习 (DL)。最常见的是,支持向量机 (SVM) 和卷积神经网络 (CNN) 是人工智能的重要算法,在文献中用于提高 GNSS 系统的定位精度。本文通过考虑 GNSS 接收器在射频 (RF) 前端级别、预相关级别、后相关级别和导航级别的不同阶段来进行文献综述,这将更好地理解 AI 在该领域的实施。主要研究工作是在后相关阶段进行的,其中使用了不同的数据格式,如相关输出、国家海洋电子协会 (NMEA) 数据和接收器独立交换格式 (RINEX) 数据。除此之外,本文还讨论了与 AI 算法应用相关的威胁和风险因素。1.简介 GNSS 使用精确的定时信息、定位和同步技术提供全球和实时服务。目前,美国的全球定位系统(GPS)、俄罗斯的全球导航卫星系统(GLONASS)、欧洲的伽利略(GALILEO)和中国的北斗卫星导航系统(BDS)是全面运行的GNSS系统。此外,印度的印度星座导航(NavIC)和日本的准天顶卫星系统(QZSS)都是独立自主的区域导航系统。近年来,GNSS应用越来越精确,其精确度为广泛的应用打开了大门。[1]。卫星导航系统是根据发现的物理定律设计的[2]。• GNSS系统背后的基本思想是卫星在太空中传输信号。在这里,卫星在轨道上的位置遵循开普勒行星运动定律。• 这些信号由地球表面或附近的接收器接收。扩频技术用于获取从地球轨道发射的非常微弱的卫星信号。
项目一览 全球导航卫星系统 (GNSS) 技术如今已在日常生活中无处不在:它们被集成到电子设备中,并被公众、测量员和地球科学家定期使用。特别是在发展中国家,GNSS 应用提供了具有成本效益的解决方案,使其能够促进经济和社会发展,同时又不忽视保护环境的需要,从而促进可持续发展。 当前的 GNSS 包括全球定位系统 (GPS)、全球导航卫星系统 (GLONASS)、北斗导航卫星系统 (BDS) 和欧洲卫星导航系统 (Galileo)。还有两个区域系统,即印度星座导航系统 (NavIC) 和准天顶卫星系统 (QZSS),以及旨在提高一个或多个 GNSS 质量(例如准确性、稳健性和信号可用性)的各种增强系统。 除了 GNSS,其他空间技术(如地球观测 (EO) 卫星或通信卫星)在创造社会经济效益方面发挥着关键作用。地球观测卫星能够持续、详细地监测地球表面,为环境保护、资源管理和灾害应对提供宝贵数据。这些卫星有助于跟踪森林砍伐、城市扩张和农业用地变化,并为管理水资源和减轻气候变化影响提供重要见解。另一方面,通信卫星促进全球连通性,通过向偏远和服务不足的地区提供互联网接入来弥合数字鸿沟,从而支持教育、远程医疗和经济发展。这些技术与全球导航卫星系统 (GNSS) 一起,构成了一套全面的工具包,以应对与可持续发展相关的各种挑战,确保以协调和有效的方式实现 2030 年可持续发展议程。为了解决广泛的全球导航卫星系统和相关技术应用以获得社会经济效益,并着重于启动试点项目和加强全球导航卫星系统相关机构的网络,将在线举办一次关于全球导航卫星系统和相关空间技术支持城市可持续发展挑战的研讨会。研讨会的主要目标是加强各国之间的信息交流,提高应用全球导航卫星系统和其他空间技术解决方案的能力;分享有关国家、地区和全球项目和举措的信息,使各地区受益;并加强这些项目和举措之间的相互影响。讲习班的具体目标是介绍基于 GNSS 的技术和其他空间技术,以支持城市可持续发展挑战;促进更多交流具体应用的实际经验;重点关注国家和/或区域层面的适当 GNSS 应用项目;并确定建议和调查结果,以作为对外层空间事务处和全球导航卫星系统国际委员会 (ICG) 的贡献,特别是在建立伙伴关系以加强和实现卫星导航科学和相关技术的能力建设方面。本次讲习班利用了题为“对“太空 2030”议程的贡献:欧盟空间支持 80 亿人口的世界”的报告中确定的挑战