抽象相干量子发射器是高级量子技术的中心资源。六角硼硝酸盐(HBN)容纳了一系列量子发射器,可以使用诸如高温退火,光学掺杂和用电子或离子辐照等技术进行设计。在这里,我们证明了此类过程可以降低HBN中量子发射器的连贯性,从而降解功能。具体来说,我们表明,在HBN纳米化方案中常规使用的HBN退火和掺杂方法会导致B-中心量子发射器的脱谐。详细表征了Decerention,并归因于在SPE激发期间静电波动并诱导光谱扩散的电荷陷阱的缺陷。当发射器是通过HBN生长的原始薄片的电子束照射来设计的,在HBN的电子束辐射中,B-中心线宽接近涉及干扰和纠缠所需的量子应用所需的寿命极限。我们的工作强调了晶格质量对于在HBN中实现相干量子发射器的至关重要性,尽管人们普遍认为HBN晶格和HBN SPE非常稳定,并且对化学和热降解具有弹性。它强调了对纳米制作技术的需求,这些技术在工程HBN SPES和量子交联技术的设备上时避免了晶体损伤。
摘要。本文在我的脑海中介绍了MQ(MQOM),这是一种基于求解二次方程多元系统(MQ问题)的难度的数字签名方案。MQOM已被列入NIST呼吁,以寻求额外的量词后签名方案。MQOM依赖于头部(MPCITH)范式的MPC来为MQ构建零知识证明(ZK-POK),然后通过Fiat-Shamir启发式将其转变为签名方案。基本的MQ问题是非结构化的,这是因为定义一个实例的二次方程系统是随机统一绘制的。这是多元加密策略中最困难,最研究的问题之一,因此构成了建立候选后量子加密系统的保守选择。为了有效地应用MPCITH范式,我们设计了一个特定的MPC协议来验证MQ实例的解决方案。与基于非结构化MQ实例的其他多元签名方案相比,MQOM实现了最短的签名(6.3-7.8 kb),同时保留非常短的公共钥匙(几十个字节)。其他多元签名方案基于结构化的MQ问题(不太保守),该问题要么具有大型公共密钥(例如uov)或使用最近提出的这些MQ问题的变体(例如mayo)。
摘要:对小规模系统的热力学的最新理解已使对固定输入状态实施量子过程的热力学要求的表征。在这里,我们将这些结果扩展到构建给定过程的最佳通用实现,即即使在许多独立且相同分布(I.I.D.)重复该过程。我们发现,这种实用的最佳工作成本率是由过程的热力学能力给出的,该过程的热力学能力是单字母和添加剂定义为输入和输出输出之间热状态的相对熵的最大差异。除了是量子通道的反向香农定理的热力学类似物之外,我们的结果还引入了量子典型性的新概念,并提出了凸出方法的热力学应用。
● CIMPA 学校:这是 CIMPA 的传统活动,重点关注真正推动数学发展和有研究项目空间的领域。每年都会发起征集提案,每年组织大约 20 所 CIMPA 学校。 ● CIMPA 课程:该计划包括资助在 CIMPA 活动的地理区域(非洲、中美洲和南美洲、亚洲)组织数学硕士和研究级课程。每年会发起两次征集提案,截止日期分别为 1 月初和 7 月初。 ● CIMPA 奖学金:CIMPA 资助来自发展中国家的年轻数学家参加由我们的一些合作机构组织的短期主题国际项目。每个项目都会开放申请。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
安全性和隐私性是现代通信系统的关键方面 [1]。经典的窃听信道最早由 Wyner [2] 提出,用于模拟存在被动窃听者时的通信。另一方面,Merhav 和 Shamai [3] 提出了一种不同的通信系统,其隐私要求是掩蔽。在这种情况下,发送方通过无记忆状态相关信道 p Y | X,S 传输序列 X n ,其中状态序列 S n 具有固定的无记忆分布,不受传输影响。X n 的发送方被告知 S n ,并需要向接收方发送信息,同时限制接收方可以了解的有关 S n 的信息量。掩蔽设置也可以看作是与不受信任方的通信,其中 Alice 希望向 Bob 发送有限量的信息,并隐藏信息源 [4, 5]。相关设置也在 [6–8] 中进行了考虑。量子信息领域在实践和理论方面都在迅速发展 [9]。通过量子信道的通信可以分为不同的类别。对于经典通信,霍尔沃-舒马赫-威斯特摩兰 (HSW) 定理为量子信道的容量提供了一个正则化(“多字母”)公式 [10, 11]。虽然这种公式的计算一般难以处理,但它提供了可计算的下限,并且在特殊情况下可以精确计算容量。另一个有趣的场景是 Alice 和 Bob 共享纠缠资源。虽然纠缠可用于产生共享随机性,但它是一种更强大的辅助 [12]。例如,使用超密集编码,纠缠辅助可将无噪声量子比特信道上经典消息的传输速率提高一倍。Bennett 等人 [13] 在量子互信息方面充分表征了有噪声量子信道的纠缠辅助容量。Boche 等人 [14] 在编码器中使用信道状态信息 (CSI) 处理经典量子信道。容量是根据因果 CSI 确定的,并且正则化
地震地球物理学在很大程度上依赖于地下建模,而地下建模基于对现场收集数据的数值分析。在生成一致的地下模型之前,对典型地震实验中产生的大量数据进行计算处理也需要同样大量的时间。电磁油藏数据,如 CSEM(受控源电磁)、岩石物理技术,如多井的电阻率和磁共振,以及工程优化问题,如油藏通量模拟器、井场设计和石油产量最大化,也需要强大的计算设备进行分析。另一方面,在过去十年中,量子计算机的发展取得了很大进展:机器利用量子力学定律比传统计算机更快地解决困难的计算问题。这种进步的一个具体例子就是所谓的量子霸权,最近已经使用专用量子计算机进行了演示 [1-3]。地球科学领域和相关行业(如碳氢化合物行业)有望从量子计算带来的进步中获益。目前,不同的量子技术和计算模型正在不断发展。IBM、谷歌和英特尔等巨头公司正在开发基于超导技术的量子计算机 [4]。其他公司也在投入大量精力构建基于约瑟夫森结的功能齐全的量子计算机,比如北美的 Rigetti,而美国的 IonQ 和奥地利的 AQT 则致力于开发基于捕获离子的计算机 [5]。加拿大公司 D-Wave 是量子退火计算模型的领先者 [6],该公司已经开始交易量子机器,加拿大的 Xanadu 也在提供对其光子量子计算机的云端访问 [7,8]。
回顾该学科的创立历史,大约从 1900 年到 1930 年代中期,涉及数十位物理学家甚至一些数学家的工作,涉及许多实验和观察,以及许多错误的开始和停止,我们将微积分呈现为既成事实,然后回溯以填补我们的理解。不过,读者一开始就应该明白,这种微积分有大量的实验依据。在这个开场讲座中,我们通过一个例子对比了经典力学和量子力学。这个例子清楚地说明了牛顿定律所表达的经典世界观与量子力学规则所表达的现代世界观之间的差异。谐振子是典型的物理系统,因此,对它的分析,无论是经典的还是量子的,都是该学科的原型。在本讲座中,我们将回顾谐振子的经典处理,并概述量子处理。量子处理似乎是临时的、没有动机的,应该会引起一些不安,甚至困惑。读者会看到,经典处理的方法和结果的极端简单性与量子处理的复杂性形成鲜明对比。事实上,虽然经典处理的应用和含义从数学本身就很明显,但量子处理的方法和结果却需要解释和阐释。我们在这里给出了量子处理的标准解释,但读者会发现,我们的解释虽然内部连贯,但却没有动机。这种解释是在数年的时间里与量子力学机制本身的发展同时发展起来的,但读者应该知道其他解释也是可能的。在本讲座的最后,我们将深入探讨一些围绕量子力学解释的基础问题。这与我们在本书中的其余部分的做法有所不同,在其余部分中,形式主义的发展优先于哲学问题。1 尽管如此,我们希望读者从一开始就意识到,量子力学的世界观与经典的世界观截然不同,留下了许多深刻的哲学问题。欢迎来到量子世界!
占HDFC银行的总借贷1个期限贷款15,350 3.86%2 54EC资本收益免税债券系列XVI系列XVI(2022-23)12,152 3.06%3定期贷款SBI 10,900 10,900 2.74%2.74%4贷款4 NSSF 10,000 2.52%2.52%的2.52%Express losec(ECB 51)9,640 2.640 2.402%640 2.40 2.40 252%252%2%2%2%2%2%2%2%252%。 XV(2021-22)7,313 1.84%7定期贷款6,300 1.58%8 54EC资本收益免税债券系列XIII(2019-20)6,158 158 1.55%9外币贷款9外币贷款(ECB 59)6,153 153 153 1.55%10税税收税收债券6,51%6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000(2013-14) 22.63%
