编辑器:A。Ringwald nambu – Jona-Lasino模型通过包含通过分形方法获得量子染色体动力学获得的运行耦合来进行调整。耦合遵循一个指数函数,在高能量碰撞的背景下,解释了Tsallis非扩展统计分布的起源。参数𝑞完全根据颜色数量和夸克风味的数量来确定。我们研究了扩展模型的几个方面,并将结果与标准NJL模型进行了比较,在该模型中,将恒定的耦合与急剧的截止组合使用,以使间隙方程正常。我们表明,适度的耦合以平滑的截止方式将模型正常,并重现式质量和衰减常数,从而提供了与标准NJL模型中几乎相同的Gell-Mann-Oakes-Renner关系。在两种模型中,关系都以相似的截止量表进行。这项工作的一个重要新颖性是从分形QCD真空中的物理解释,用于使夸克冷凝物重新归一致的运行耦合。
最近,LHCB合作报告了两个开放式魅力Tetraquark States,X 0(2866)和X 1(2904)。在当前工作中,我们研究了单验交换模型中的d(∗)和k(∗)相互作用,并表明x 0(2866)可以理解为d ∗‘k ∗分子,具有i(j p)= 0(j p)= 0(0 +),或者至少它具有较大的分子组分。另一方面,x 1(2904)不能解释为分子状态。受到X 0(2866)的发现的启发,以及D ∗ k ∗相互作用足以产生结合状态的事实,我们还讨论了其他开放式魅力分子的可能存在。在梅森 - 梅森部门中,获得了dd ∗的质量阈值附近的两个分子,并获得了i(j p)= 0(1 +)的d ∗ d ∗,并且使用重夸克avor对称性,它们的b ∗ b ∗ and b ∗ and b ∗ b ∗ b ∗ b ∗ b ∗对手也是可预测的。在梅森 - 巴里昂扇区中,7个开放式魅力分子在d(∗)σ(∗)c的质量阈值附近自然出现,如重夸克自旋对称性所决定。
Ravishankar 是一位理论物理学家,曾从事中能物理、高能物理 (QCD)、夸克胶子等离子体、量子霍尔效应和激光等离子体加速等领域的研究。在过去的二十年里,他一直致力于非经典性和量子信息的研究。他目前还在研究经典非阿贝尔等离子体。
研究了留下保留的住宅对称性的非亚伯离散对称性的自发分解。 div>这样,我们可以构建标准模型的扩展,其中包括一个黑暗扇区,该黑暗扇区为深色WIMP类型提供了候选。 div>基因是中微子的质量术语。 div>我们探索参数空间,以验证模型的生存能力,并在不久的将来定义可观察到的新现象。 div>这可能包括在Tau Lepton和The Quark Top瓦解中的风味强奸过程,目前正在通过CMS实验对其进行分析,以及发现可能的候选者对暗物质的检测:直接通过Darwin等合作,以及CTA等数据收集的数据。 div>
部分子分布和碎裂函数是分析大多数高能数据的核心 [1,2]。在光前沿,由于时间膨胀和渐近自由,强子由冻结的部分子组成 [3 – 5]。因此,量子色动力学 (QCD) 中的硬过程可以分解为可微扰计算的硬块乘以非微扰矩阵元素,例如部分子分布函数 (PDF) 和碎裂函数 (FF)。PDF 在光前沿被估值,并且本质上是非微扰的,这使得它们无法用标准欧几里得格子公式来计算,除了几个最低矩之外。这个缺点可以通过使用准分布 [6] 及其变体 [7,8] 来避免。这些提议现在已被许多 QCD 格子合作所采用 [9 – 14]。我们最近展示了如何将这些概念扩展到量子计算 [15] 。夸克碎裂的概念起源于菲尔德和费曼的原创工作,他们提出了夸克喷流模型来描述半包容过程中介子的产生 [16] 。该模型本质上是一个独立的部分子级联模型,其中硬部分子通过发射连续的
贡献者的风格多种多样。20 世纪 60 年代中期,对称性游戏发展非常迅速;人们进行推测并获得了回报。那些日子似乎已经过去了,那些试图进行革命的人的贡献总体上并不十分鼓舞人心。如果没有对朴素夸克模型基础的强烈偏见,达利茨评论中的大量证据,加上米特拉的评论,将使该理论得到普遍接受。如果有人发现夸克,那将是令人信服的,但正如琼斯遗憾地总结的那样,“我怀疑大多数实验主义者认为物理夸克要么不可观察,要么不存在”。利普金关于夸克模型作为强子动力学指南的讨论很有趣,例如梅什科夫、大久保和奥弗塞斯对对称性预测与实验的各种比较也很有趣。还有关于电流代数、部分守恒轴向矢量电流 (PCAC)、无限多重态等的论文。Yodh 有一篇非常详尽的文章,介绍了对称方案预测的 E* 共振的实验情况。但人们觉得可以通过查阅粒子数据组 (免费) 的最新出版物来获取更多最新信息。COLIN WrLKIN
据我们所知,没有相关工作能够将情绪状态转化为绘画。在(Salevati and DiPaola,2015)和(Colton,Valstar and Pantic,2008)中,作者提出了创建富有表现力的人物自画像的系统。然而,这些系统有明显的局限性,用户可以控制他们想要在肖像上表达的情绪(在一种情况下,他们选择它;在另一种情况下,情绪是从面部表情中检测出来的,这很容易伪造)。在这两部作品中,预定义的样式都只是应用于现有肖像。在从脑电图生成情感绘画的背景下,我们提到了(Ekster,2018)和(Random Quark,2017)。在这些情况下,绘画通过简单的线条、预定义的形状、颜色、分形或鸟群来表现情绪,导致绘画之间的差异相当低。
随着LHC过渡到精确测量机,质子Parton分布函数(PDFS)已成为分析的不确定性的主要来源,例如顶部夸克质量或HIGGS玻色子宽度的测量值。此外,在LHC处探测最有能力的碰撞时,高摩肌分数(High-X)尤其感兴趣。因此,在此制度中理解并有可能减少PDF不确定性至关重要。使用机器学习技术,我们构建了对High-X机制中Gluon PDF敏感的判别,将在将来的PDF拟合中使用。
纠缠是量子力学的一个关键特征 1–3 ,在计量学、密码学、量子信息和量子计算 4–8 等领域有应用。纠缠已在从微观 9–13 到宏观 14–16 的各种系统和长度尺度中被观察到。然而,在可访问的最高能量尺度上,纠缠仍然基本上未被探索。这里,我们报告了在大型强子对撞机产生的顶-反顶夸克事件中对纠缠的最高能量观测,使用由 ATLAS 实验记录的质子-质子碰撞数据集,其质心能量为 √ s = 13 TeV,积分光度为 140 倒数飞靶 (fb) −1。自旋纠缠是通过测量单个可观测量 D 检测到的,D 是由带电轻子在其母顶夸克和反顶夸克静止框架中的夹角推断出来的。可观测量是在顶夸克-反顶夸克产生阈值附近的一个狭窄区间内测量的,在此区间内纠缠检测预计会很显著。它是在一个用稳定粒子定义的基准相空间中报告的,以尽量减少因蒙特卡洛事件生成器和部分子簇射模型在模拟顶夸克对产生方面的局限性而产生的不确定性。当 m 340 GeV < < 380 GeV tt 时,纠缠标记测得为 D = −0.537 ± 0.002(统计)± 0.019(系统)。观测结果与没有纠缠的情况相差超过 5 个标准差,因此这是首次观察到夸克对中的纠缠,也是迄今为止最高能量的纠缠观测。
对质子的深层非弹性散射提供了第一个证据,表明哈德子不是基本的,而是由夸克组成[1,2]。这是确定质子内部分布函数(PDF)的必不可少的工具,在质子内进行横截面预先分解所需的。但是,带电的瘦素相互作用,仅探测被充电的夸克的密度。必须推断出中性胶子的密度,这可以通过研究夸克PDF如何以由交换的虚拟光子质量设定的比例来发展来完成。这些PDF以拟合[3-5]的拟合确定,包括尤其是E±P散射[6,7],在PP碰撞中,向量玻色子[8-11]和重型Quarks [12-15]的正向产生[12-15]。由于缺乏低x的数据,Parton携带的强子动量的比例,归因于Gluon PDF的不确定性在低x时很大,甚至与X的gluon密度兼容,甚至与x [16]兼容。因此需要其他方法才能访问Gluonic PDF。PP碰撞中的中央独家媒介产生(CEP)是单个介子的准弹性生产,使质子完好无损。独家志生产的产生是由一个接近其质量壳的虚拟光子转换为CC对,后者将其放到J /ψ或ψ(2 s)介子中。这些过程在魅力夸克质量的尺度上探测了gluonic pdf。该过程的排他性要求,在领先顺序上,目标强子可以改变两个胶子。1。因此,横截面大约缩放为Gluon密度平方[17-20]。过程和主要背景如图