我们研究了使用量子最优控制在 87 Sr、ad = 10 维(四进制)希尔伯特空间中实现 I = 9 / 2 核自旋状态的幺正映射的能力。通过核自旋共振和张量交流斯塔克位移的组合,仅通过调制射频磁场的相位,该系统即可实现量子可控。碱土金属原子(例如 87 Sr)由于复合线较窄且激发态的超精细分裂较大,因此具有非常有利的品质因数。我们用数字方式研究了量子速度极限、最优参数以及任意状态制备和完整 SU(10) 映射的保真度,包括由于光移激光引起的光泵浦而产生的退相干。我们还研究了使用稳健控制来减轻由于光移不均匀性而导致的一些失相。我们发现,当 rf Rabi 频率为 rf 且光移不均匀性为 0.5% 时,我们可以在时间 T = 4.5 π/ rf 内制备任意 Haar 随机状态,平均保真度 ⟨ F ψ ⟩= 0.9992,并在时间 T = 24 π/ rf 内制备任意 Haar 随机 SU(10) 映射,平均保真度 ⟨ FU ⟩= 0.9923。
光子量子信息的趋势紧随经典光学和电信的技术进步。在这方面,还为生成多维量子状态(QUDITS)的多元光通信渠道的进步,因为它们的使用是多个量子信息任务的优势。朝这个方向引导的一条当前路径是使用太空划分多路复用光纤维,该光纤维提供了一个平台,用于效力造成的路径编码的Qudit状态。在这里,我们报告了纠缠Qudits的参数下转换来源,该Qudits完全基于(并因此与)最先进的多重纤维技术。源设计使用现代的多重纤维梁拆分器来准备泵激光束并测量产生的纠缠状态,从而达到了高光谱亮度,同时提供了稳定的档案。此外,它可以很容易地与任何核心几何形状一起使用,这至关重要,因为尚未确定电信中多重量纤维的广泛标准。我们的来源代表了朝着量子通信与下一代光学网络兼容的一步。
高维光子态 (qudits) 对于提高量子通信的信息容量、噪声鲁棒性和数据速率至关重要。时间箱纠缠量子位元是通过光纤网络实现高维量子通信的有希望的候选者,其处理速率接近传统电信的速率。然而,它们的使用受到相位不稳定性、时间不准确性以及时间箱处理所需的干涉方案的低可扩展性的阻碍。同样,增加每个光子状态的时间箱数量通常需要降低系统的重复率,进而影响有效量子位元速率。在这里,我们展示了一个光纤尾纤集成光子平台,该平台能够通过片上干涉系统在电信 C 波段生成和处理皮秒间隔的时间箱纠缠量子位元。我们通过实验演示了具有时间纠缠量子的 Bennett-Brassard-Mermin 1992 量子密钥分发协议,并通过展示维度缩放而不牺牲重复率,将其扩展到 60 公里长的光纤链路。我们的方法能够以标准电信通信的典型处理速度(10 GHz 的 GHz 速度)操纵时间纠缠量子,并且每个单频信道具有高量子信息容量,这代表着朝着在标准多用户光纤网络中高效实现高数据速率量子通信迈出了重要一步。
摘要 — 量子计算机有望比传统计算机更快地解决几类问题。当前的研究主要集中在量子比特上,即信息单位只能假设两个级别的系统。然而,大多数(如果不是全部)技术平台的底层物理支持两个以上的级别,通常称为量子比特。使用量子比特执行计算会增加整体复杂性,同时减少操作次数并降低错误率。此外,可以将具有不同级别数量的量子比特混合在一个系统中,以简化实验控制并尽可能保持表示紧凑。利用这些功能需要专用的软件支持,以自动化和高效的方式应对增加的复杂性。在本文中,我们提出了一个基于决策图 (DD) 处理混合维系统的量子比特模拟器。更准确地说,我们讨论了作为底层数据结构引入的决策图类型以及由此产生的实现。实验评估表明,所提出的解决方案能够有效地模拟混合维度量子电路,具体用例包括一个电路中的 100 多个量子位。模拟器的源代码可通过 github.com/cda-tdum/MiSiM 在 MIT 许可下获得。索引术语 — 量子计算、量子位、模拟
摘要 - 我们提出了订单1的Wasserstein距离与N Qudits的量子状态的概括。该提案在规范基础的向量中恢复了锤距,更通常是在规范的基础上,量子状态的经典瓦斯坦距离。相对于作用于一个Qudit的Qudits和单一操作的排列,所提出的距离是不变的,并且相对于张量产品是加法的。我们的主要结果是相对于所提出的距离,冯·诺伊曼熵的连续性结合,这显着增强了相对于痕量距离的最佳连续性。我们还提出了将Lipschitz常数的概括为量子可观察到的。量子Lipschitz常数的概念使我们能够使用半限定程序来计算提出的距离。我们证明了Marton的运输不平等的量子版本和量子Lipschitz可观察到的量子的量子高斯浓度不平等。此外,我们在浅量子电路的收缩系数以及相对于所提出的距离方面的张量量量的张量。我们讨论了量子机学习,量子香农理论和量子多体系统中的其他可能应用。
纠缠是量子力学的定义特征之一,也是许多量子信息协议的基本资源 [1]。许多理论和实验研究都致力于研究一对二能级系统(量子比特)的纠缠。高维(量子比特)系统的二分纠缠研究较少。然而,从根本上讲,更好地理解纠缠量子比特可以澄清量子物理的一些微妙之处。例如,与量子比特相比,量子比特被证明可以增强非经典效应,因为它们允许更强的局部现实主义违反 [2, 3]。此外,从更务实的角度来看,高维量子态比简单量子比特具有更高的信息容量,并允许量子密钥分发协议容忍更高的噪声阈值 [4]。在光子系统中,(纠缠)量子比特被编码在高维(最终是无限维)希尔伯特空间的有限维子空间中。这可以通过使用空间模式(例如轨道角动量 [5, 6, 7])或离散化连续自由度(例如频率 [8, 9] 或时间 [10, 11])来实现。此外,这种最初有限维的状态可以在其动态演化过程中扩展到整个希尔伯特空间。例如,当光子轨道角动量携带状态 [12] 通过自由空间 [13, 14, 15, 16] 或光纤 [17] 传输时,就是这种情况。然而,输出状态通常被投射到
摘要 分子纳米磁体 (MNM) 是含有相互作用自旋的分子,一直是量子力学的游乐场。它们的特点是有许多可访问的低能级,可用于存储和处理量子信息。这自然开启了将它们用作量子比特的可能性,从而扩大了基于量子比特架构的量子逻辑工具。这些额外的自由度最近促使人们提出在单个分子中编码带有嵌入式量子纠错 (QEC) 的量子比特。QEC 是量子计算的圣杯,这种量子比特方法可以规避标准多量子比特代码中典型的物理量子比特的大量开销。分子方法的另一个重要优势是在制备复杂的超分子结构时实现了极高的控制程度,其中各个量子比特相互连接,同时保持其各自的属性和相干性。这对于构建量子模拟器(能够模拟其他量子对象动态的可控系统)尤其重要。使用 MNM 进行量子信息处理是一个快速发展的领域,但仍需要通过实验进行充分探索。需要解决的关键问题与扩大量子位/量子比特的数量及其各自的寻址有关。人们正在深入探索几种有希望的可能性,从使用单分子晶体管或超导设备到光学读出技术。此外,化学领域的新工具也可能随时可用,例如手性诱导的自旋选择性。在本文中,我们将回顾这一跨学科研究领域的现状,讨论尚未解决的挑战和设想的解决方案,这些方案最终可能会释放分子自旋在量子技术中的巨大潜力。
半导体旋转量子尺将出色的量子性能与使用行业标准的金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化量(MOS)工艺相结合的量子性能。这也适用于离子植入的供体旋转,这些供体的旋转进一步提供了特殊的连贯性时间和核旋转中的较大希尔伯特空间尺寸。在这里,我们演示并整合了多种策略来制造基于规模的供体量子计算机。,我们使用31 pf 2分子植物将放置确定性三倍,而在检测植入物方面达到99.99%的情况。通过植入较重的原子(例如123 SB和209 BI)来保留类似的结合,这些原子代表用于量子信息处理的高维Qudits,而SB 2分子可以确定性地形成紧密间隔的Qudits。我们使用纳米孔径使用渐进式植入,证明了具有300 nm间距的供体原子的常规阵列的确定性形成。这些方法涵盖了在硅中基于供体的量子计算机构建的技术要求。
使用多级信息载体(也称为量子比特)是探索量子计算设备可扩展性的一条有前途的途径。在这里,我们介绍了一种量子处理器寄存器的原理验证实现,该寄存器使用线性阱中的光寻址 171 Yb + 离子量子比特。171 Yb + 离子的丰富能级结构允许使用 435.5 nm 四极时钟跃迁的塞曼子能级进行高效且稳健的量子比特编码。我们展示了由单量子比特旋转和双量子比特 Mølmer-Sørensen 操作组成的通用门集的实现,该操作使用双量子系统,形式上等同于基于通用门的四量子比特处理器。我们的研究结果为进一步研究使用基于捕获离子的处理器更有效地实现量子算法铺平了道路,特别是探索 171 Yb + 离子量子比特的性质。
摘要 分子纳米磁体 (MNM) 是含有相互作用自旋的分子,一直是量子力学的游乐场。它们的特点是有许多可访问的低能级,可用于存储和处理量子信息。这自然开启了将它们用作量子比特的可能性,从而扩大了基于量子比特架构的量子逻辑工具。这些额外的自由度最近促使人们提出在单个分子中编码带有嵌入式量子纠错 (QEC) 的量子比特。QEC 是量子计算的圣杯,这种量子比特方法可以规避标准多量子比特代码中典型的物理量子比特的大量开销。分子方法的另一个重要优势是在制备复杂的超分子结构时实现了极高的控制程度,其中各个量子比特相互连接,同时保持其各自的属性和相干性。这对于构建量子模拟器(能够模拟其他量子对象动态的可控系统)尤其重要。使用 MNM 进行量子信息处理是一个快速发展的领域,仍然需要通过实验进行充分探索。要解决的关键问题与扩大量子位/量子比特的数量及其各自的寻址有关。正在深入探索几种有希望的可能性,从使用单分子晶体管或超导设备到光学读出技术。此外,化学领域的新工具也可能随时可用,例如手性诱导的自旋选择性。在本文中,我们将回顾这一跨学科研究领域的现状,讨论尚未解决的挑战和设想的解决方案,这些最终可能会释放分子自旋在量子技术中的巨大潜力。
