摘要:我们的文章,文化遗产和偏见研究了使用机器学习来解释和对人类记忆和文化遗产进行分类的挑战和潜在解决方案。我们认为,偏见是文化遗产收藏(CHC)及其数字版本中固有的,并且AI管道可能会扩大这种偏见。我们假设有效的AI方法需要具有结构化元数据的庞大,通知的数据集,而CHC通常由于多种数字化实践和有限的互连性而缺乏CHC。本文讨论了CHC和其他数据集中偏见的定义,并探讨了它是如何源于培训数据和人文专业知识中生成平台中的不足。我们得出的结论是,关于AI和CHC的奖学金,准则和政策应以AI技术的固有和增强为偏见。我们建议在整个过程中实施偏见缓解技术,从收集到策展,以支持有意义的策划,拥抱多样性并迎合未来的遗产受众。
摘要 人工智能聊天机器人正日益取代人类聊天服务代理,因为机器人能够通过自然语言和人工智能 (AI) 技术与人类交流。研究发现,大学需要提供由人工智能驱动的有效、高效的数字平台,以支持整体虚拟学习 (Alharthi、Spichkova 和 Hamilton,2019)。COVID-19 大流行扰乱了面对面的学习,大多数机构现在已经采用了混合或纯在线学习。在新生以虚拟方式入学的情况下,学生的问询有所增加,传统的人工支持渠道变得无效。这项研究旨在开发一种对话式人工智能聊天机器人,以提高内罗毕大学计算与信息学系 (DCI) 处理学生问询的效率。这项开发研究采用了瀑布式软件开发方法。数据来源是内罗毕大学网站上的内容和 DCI 学生。使用内容分析和结构化访谈来获取数据。自然语言处理 (NLP) 和 LSTM 模型用于构建 AI 聊天机器人 (称为 UniBot)。BLUE 评估方法用于评估 UniBot 在提供准确响应方面的有效性。研究确定聊天机器人的响应与 BLUE 得分为 0.75 几乎完美匹配。还采用了定量方法来评估模型的效率,方法是让 20 名目标学生使用聊天机器人 3 周,并通过问卷给出反馈。从学生的回答中获得的平均分数为 4.10,标准差为 0.59,这意味着 UniBot 实现了提高处理学生查询效率的目标。特别是,与 UniBot 互动的学生表示,该机器人易于使用,可以非常快速地检索所需信息。但是,聊天机器人无法回答它未接触过的主题的问题,并且会留下未回答的问题。在这种情况下,建议聊天机器人提供相关链接或人脉。
1.1 单一来源国防合同监管框架 1 规定了符合合格国防合同 (QDC) 或合格分包合同 (QSC) 要求的合同如何定价,并要求这些合同和持有这些合同的承包商保持透明度。SSRO 在允许的情况下向国防大臣以及现有和未来的 QDC/QSC 承包商提供指导、培训和支持,以帮助他们理解和应用监管框架的要求。SSRO 还负责回答有关监管框架的应用以及 SSRO 关于合同定价和报告的法定指导的问题。在立法规定的某些情况下,与监管框架应用有关的问题可能会提交给 SSRO 以征求正式意见或决定。 2
背景:外行可以通过大语言模型(LLM)(例如ChatGpt和搜索引擎(例如Google))轻松访问健康信息。搜索引擎改变了健康信息访问,LLMS为回答Laypeople的问题提供了新的途径。目标:我们旨在比较对LLM和搜索引擎的使用频率和态度,以及它们的比较相关性,有用性,易用性以及对健康查询的响应。方法:我们进行了筛查调查,以比较寻求健康信息的LLM用户和非用户的人口统计学,并通过逻辑回归分析结果。邀请筛查调查的LLM用户进行后续调查,以报告他们寻求的健康信息的类型。我们使用ANOVA和Tukey Post hoc测试比较了LLM和搜索引擎的使用频率。最后,配对样本Wilcoxon测试将LLM和搜索引擎比较了感知的有用性,易用性,可信度,感受,偏见和拟人化。结果:总计,2002年的美国参与者在多产的情况下招募了有关使用LLM和搜索引擎的筛查调查。,参与者中有52%(n = 1045)是女性,平均年龄为39岁(SD 13)年。参与者为9.7%(n = 194),12.1%(n = 242)黑色,73.3%(n = 1467)白人,1.1%(n = 22)西班牙裔,3.8%(n = 77)是其他种族和种族。此外,1913年(95.6%)使用搜索引擎查找健康查询,而LLMS的642(32.6%)。男性使用LLM的健康问题比女性更高(1.63,1.63,95%CI 1.34-1.99; p <.001)。黑色(或1.90,95%CI 1.42-2.54; p <.001)和亚洲(或1.66,95%CI 1.19-2.30; p <.01)个体的几率比白人个体更高。那些感知到健康的人(OR 1.46,95%CI 1.1-1.93; p = .01)的人比健康状况良好的人更有可能使用LLM。更高的技术能力提高了LLM使用的可能性(OR 1.26,95%CI 1.14-1.39; P <.001)。在对281名LLM用户健康的后续调查中,大多数参与者首先使用搜索引擎(n = 174,62%)来回答健康问题,但第二个最常见的第一个咨询者是LLMS(n = 39,14%)。llms被认为是有用的(p <.01)且相关性较小(p = .07),但引起了较少的负面感觉(p <.001),看起来更人性化(llm:n = 160,vs search:n = 32),被视为较小的偏见(p <.001)。信任(p = .56)和易用性(p = .27)没有差异。结论:搜索引擎是健康信息的主要来源;然而,对LLM的积极看法表明使用日益增长。未来的工作可以通过补充外部参考和限制有说服力的语言来遏制过分依赖的答案来探讨LLM信任和有用性是否得到增强。与卫生组织的合作可以帮助提高LLMS健康产出的质量。
生物数据库中的大量数据泛滥提供了医疗保健和生命科学领域的各种信息。这些数据库为研究人员,科学家和工作专业人员提供了加速发现,开发新的假设并确定新型模式的机会[1]。另一方面,这些数据库需要实现复杂的存储和检索系统来从这些大数据库中检索信息。这成为研究人员和科学家的挑战[2]。作为RDF知识图发布的大多数生物数据库都依赖于SPARQL(SPARQL协议和RDF查询语言)等复杂的查询语言[3]来从数据库中检索信息。没有技术知识或有限的技术知识,研究人员和域用户无法编写准确且可靠的SPARQL查询,这可能会成为利用这些数据库的全部潜力的瓶颈[3] [1]。SPARQL是一种查询语言,可以使用户从数据库中查询信息[4] [3]。许多生物数据库利用RDF(资源描述框架)数据模型,其中RDF表示信息为适用于蛋白质功能(例如蛋白质功能,基因相互作用)的复杂生物学关系的互连三元组(受试者,谓词,对象)[2] [2] [4]。RDF数据可通过SPARQL端点提供,而SPARQL查询语言是专门设计用于查询RDF数据的,可以有效
请确认所有塔系列的设计报告、设计计算、载荷计算和设计文件(即 PLS-Tower 的 .tow 文件)的可用性,以便审查塔设计中因加固横臂而产生的额外重量。或者,顾问将建议对重量跨度违规的塔进行加固,EPC 承包商将在详细工程设计阶段对塔设计进行详细评估和审查。
Defining Data Assets .................................................................................................................................................... 5 GQL Queries ................................................................................................................................................................. 5 Analytics ........................................................................................................................................................................ 5 Create Employee Lists ................................................................................................................................................. 6
请告知,提交商业竞标/报价的时间表已延长了三个工作日(星期五25-08-2023(星期五)下午6:00之前至30-08-2023(星期三)下午6:00之前)。,银行必须在要求提案中指定的地址(星期三)下午6:00之前收到报价。行情必须由银行以指定的地址收到,不迟于上述报价 /商业出价的最后日期。NHB在适当截止日期后收到的任何出价,以提交NHB规定的出价,将被拒绝并未打开。
- 讲座1(初学者):数据库简介·什么是数据库,为什么我们使用它们?·数据库的类型(关系,NOSQL等)·公共关系数据库管理系统(RDBMS),例如mySQL - 第2期(初学者):SQL·基础知识·SQL语法的基础知识:选择,从哪里,何处,订购,限制 - 使用一个表格 - 数据类型和无效数据操作·简单数据操纵:插入,更新,更新,更新,删除 - 删除 - 删除 - 删除 - 3(启动)(启动)和关系。 many-to-many relationships ·Foreign keys and primary keys — Lecture 4 (beginner): creating a SQL database ·Introduction to database creation ·Database design considerations ·Normalization, denormalization and trade-offs — Lecture 5 (advanced): advanced queries ·Aggregation and grouping: SUM, COUNT, AVG, MIN, MAX, GROUP BY, HAVING ·Subqueries and nested queries ·Combining queries with联合,相交,除
•强大的分析思维和解决问题的技能•信息管理的能力•提出和指定用户需求•能够熟练掌握详细的ICT报告,指标,仪表板,仪表板,记分卡和数据可视化的理解•对关系数据库原理,数据结构,逻辑和SQL-type Queries的能力和SQL-type Quering smectife Insperion teach interive intection•使用典型的工具•概念化工具•