在2021年3月,法国谷歌和Sangouard发表了一项研究(2),该研究显示了如何在177天内使用“独奏” 13,436 QUIBIT 在177天内违反2048 RSA协议
本文研究了随机量子电路中的保真度衰减,重点是掉期操作。所考虑的模型交织了具有任意排列的2量门的层。作者分析了通过故障掉期门的组合实现的2 Quibit门和故障排列的效果。为了易于分析,该模型由可解决的模型替代,其中置换量用π→𝑅π𝑅取代,以从HAAR随机分布中取样。
Mermin Square方案为与国家无关的上下文提供了简单的证明。在本文中,我们研究了从Mermin方案获得的多面体MPβ,在一组环境中由函数β进行了参数。直到组合同构,有两种类型的多型MP 0和MP 1,具体取决于β的均衡。我们的主要结果是这两个多面体的顶点的分类。另外,我们描述了与多面体关联的图。MP 0的所有顶点结果都是确定性的。此结果提供了一个新的拓扑证明,证明了CHSH场景上的非上下文分布的精细表征。mp 1可以看作是λ-聚植物的非局部玩具版本,这是用于仿真通用量子计算的一类多型。在2 Quibit的情况下,我们使用MP 1进行了λ-聚型的分解,其顶点是分类的,并且(2、3、2)钟形场景的非信号层,其顶点是众所周知的。
串扰发生在大多数具有多个量子的量子系统中。它可能导致各种相关和非局部串扰误差,这可能特别有害于耐断层的Quantum误差校正,这通常是局部误差且相对可预测的。缓解串扰错误需要理解,建模和定义它们。在本文中,我们介绍了一个用于串扰错误的综合框架,以及用于检测和本地化的协议。我们给出了严格的串扰误差的偏见,该错误捕获了被称为“ Crosstalk”的各种不同的物理杂物,以及用于无串扰量子处理器的混凝土模型。违反此模型的错误是串扰错误。接下来,我们给出了串扰错误的等效但纯粹的(独立于模型的)定义。使用此定义,我们构建了一种协议,用于通过发现观察到的实验概率之间的条件依赖性来检测多Quit处理器中的一大批串扰误差。这是高度有效的,从某种意义上说,独特的实验数量最多可以在立方体上重新提出尺度,而且通常是四边形的量子数。我们使用2量和6 Quibit Process的模拟演示了协议。
抽象的量子状态制备是许多量子算法中的重要常规,包括方程式线性系统,蒙特卡洛模拟,量子采样和机器学习的解决方案。迄今为止,还没有将经典数据编码为基于门的量子设备的既定框架。在这项工作中,我们提出了一种通过将分析函数采样到量子电路中获得的矢量的编码方法,该量子电路具有相对于量子数的多项式运行时,并且提供了> 99。9%的精度,比最先进的两个Quibit Gate Fidelity更好。我们采用硬件有效的变分量子电路,这些电路使用张量网络模拟,以及向量的矩阵乘积状态表示。为了调整变化门,我们利用了融合自动梯度计算的Riemannian优化。此外,我们提出了一种“一次切割,测量两次”方法,该方法使我们在大门更新期间避免了贫瘠的高原,将其基准为100 Qubit的电路。值得注意的是,任何具有低级别结构(不受分析功能的限制)的向量都可以使用呈现的方法编码。我们的方法可以轻松地在现代量子硬件上实现,并有助于使用混合量子计算体系结构。