†加利福尼亚大学,加利福尼亚州圣地亚哥分校化学与生物化学系,美国加利福尼亚州拉霍亚‡加利福尼亚大学化学工程系,加利福尼亚大学戴维斯大学,加利福尼亚州戴维斯,美国加利福尼亚州戴维斯,美国微生物学和免疫学系,奥塔哥大学,奥塔哥大学,新西兰邓尼丁,新西兰;加利福尼亚州加利福尼亚州加利福尼亚州加利福尼亚州的加利福尼亚州,这些作者贡献了同样的贡献。*电子邮件:cseitz@ucsd.edu,sahn@ucdavis.edu,kurt.krause@otago.ac.ac.nz于1920年代发现的摘要,Cytochrome BD是一种终端氧化酶,是一种终端氧化酶,它已引起了人们的注意,因为它首次在2016年首次使用了药物结构。仅在原核生物中发现,我们在这里将其作为结核分枝杆菌(MTB)的药物靶标。对细胞色素BD的大多数药物发现工作涉及典型基板喹酮的类似物,即AurachinD。在这里,我们报告了六个新的细胞色素BD抑制剂脚手架,从一百万个分子的计算筛选中确定的六个新的细胞色素BD抑制剂脚手座,并通过体外测试确认了目标活性。这些脚手架为MTB疗法提供了新的铅优化途径。引入细胞色素BD氧化酶或细胞色素BD,1是一种仅在原核生物中发现的氧气还原酶,在有氧呼吸周期中将氧气降低至水。泛醇(或梅纳喹醇)与细胞色素BD结合,并将其氧化为泛氨基酮(或甲烷酮)。2
摘要:多年来,有证据表明胞质喹酮还原酶NQO2在帕金森氏症诱导的多巴胺神经元变性模型中可能的贡献作用,但大多数数据已在体外获得。因此,我们问了一个问题,NQO2是否参与MPTP的体内毒性,MPTP是一种经典用于帕金森氏病诱导神经变性的神经毒素。首先,我们表明NQO2在小鼠黑质中表达,nigra多巴胺能细胞体和人多巴胺能SH-SY5Y细胞也表达。一种高度特异性的NQO2抑制剂S29434能够减少具有星形胶质细胞U373细胞的SH-SY5Y细胞的共培养系统中MPTP诱导的细胞死亡,但在SHSY5Y单一培养物中无活性。我们发现S29434仅略微防止MPTP中毒在体内中的MPTP中的黑质酪氨酸羟化酶 +细胞损失。该化合物在第7天产生了多巴胺能细胞存活的略有增加,MPTP治疗后21个,尤其是1.5 mg和3 mg/kg剂量方案。未达到统计显着性的救援效应(除了在第7天进行了一个实验),并且在最新时间点随着4.5 mg/kg剂量的降低。尽管在小鼠MPTP模型中缺乏NQO2抑制剂的强大保护活性,但我们不能排除酶在帕金森氏变性中的可能作用,尤其是因为它在多巴胺能神经元中基本上表达。
据报道,小分子IACS-010759通过干扰线粒体NADH-偶联氧化还原酶(复合物I)的功能,在没有表现出正常细胞中的细胞毒性毒性的情况下,通过干扰线粒体NADH-偶像毒素氧化还原酶(复杂I)的功能,可有效抑制糖酵解缺陷型低氧肿瘤细胞的增殖。考虑到复合物I的常规奎因酮位点抑制剂的显着细胞毒性,例如Piericidin和乙酰基蛋白家族,我们假设IACS-010759对复合物I对复合物I的作用机理与其他已知的Quinone位置内部构型的作用机理不同。为了测试这种可能性,我们在这里研究了IACS-010759的牛心脏sistmentocochondrial部位的机制。我们发现,IACS-010759与已知的奎因酮位点抑制剂一样,可以抑制ASP 160的Tosyl re-ner-aS a aSP 160中的化学修饰,位于49 kDA亚基中,位于先前提议的喹酮酮 - access通道内部的深处。与其他抑制剂相反,IACS-010759方向依赖性地抑制了前进和反向电子转移,并且没有抑制喹唑啉型抑制剂[125 I] AZQ与49-KDA subunit的N末端的结合。光咖啡蛋白标记实验表明,光反应性衍生物[125 I] IACS-010759-PD1与内存亚基ND1的中间结合,并且抑制与49-KDA或PSST亚基结合的抑制器无法抑制结合。我们得出的结论是,IACS-010759在复合物I中的结合位置与任何其他已知的酶抑制剂的结合位置不同。我们的发现以及先前研究的发现表明,与结构生物学研究提出的奎因酮Access通道模型相比,具有广泛不同化学特性的复杂I抑制剂的作用机理更为多样化。
摘要 光系统 II (PSII) 利用红光的能量分解水并还原醌,这是一个基于叶绿素 a (Chl-a) 光化学的耗能过程。两种蓝藻 PSII 可以使用叶绿素 d (Chl-d) 和叶绿素 f (Chl-f) 进行相同的反应,但需要使用能量较低的远红光。Acaryochloris marina 的 PSII 的 35 个 Chl-a 中除了一个以外全部被 Chl-d 取代,而兼性远红光物种 Chroococcidiopsis thermalis 的 PSII 只有 4 个 Chl-f、1 个 Chl-d 和 30 个 Chl-a。从生物能量学角度考虑,远红光 PSII 预计会失去光化学效率和/或对光损伤的恢复能力。在这里,我们比较了 Chl-f-PSII、Chl-d-PSII 和 Chl-a-PSII 中的酶周转效率、正向电子转移、逆反应和光损伤。我们表明:(i) 所有类型的 PSII 都有相当的酶周转效率;(ii) Chl-d-PSII 受体侧的能隙改变有利于通过 P D1 + Phe - 重新填充进行重组,导致单线态氧产生增加,并且与 Chl-a-PSII 和 Chl-f-PSII 相比对高光损伤更敏感;(iii) Chl-f-PSII 中受体侧的能隙经过调整以避免有害的逆反应,有利于对光损伤的恢复而不是光利用效率。结果可以通过电子转移辅因子 Phe 和 QA 的氧化还原调节差异以及与主要电子供体共享激发能的叶绿素的数量和布局差异来解释。 PSII 通过两种不同的方式适应较低的能量,每种方式都适合其特定的环境,但具有不同的功能惩罚。
收到2022年9月14日; 2023年3月23日接受; 2023年4月17日出版作者分支:1广州林业与景观建筑研究所,广州510405,中国公关; 2广东工业理工学院的生态环境技术学院,纳海校区,佛山528225,中国公关; 3州生物控制和广东植物资源主要实验室的国家主要实验室,生命科学学院,孙子森大学,广州510275,公关中国。*通信:changchao Xu,Xuchangchao12345@aliyun。com关键字:磷酸盐溶解化; T-DNA插入;烯醇酶。缩写:AD,任意退化底漆; ATMT,农杆菌Tumefaciens介导的转化;棒,伴侣抗性基因;凸轮,醋酸纤维素膜;挖掘,二高氧素蛋白; DW,干重; EGFP,增强的绿色荧光蛋白; GCD,葡萄糖脱氢酶基因; GFP,绿色荧光蛋白; GUS,β-葡萄糖醛酸酶; HPH,Hygromycin B磷酸转移酶基因; HPLC,高性能液相色谱; IM,感应培养基; LB,Luria – Bertani培养基; MES,2-(N- morpholino)乙磺酸; NCM,硝酸纤维素膜; PDA,马铃薯葡萄糖琼脂; PDB,马铃薯葡萄汤; PEG,聚乙烯乙二醇; PQQ,吡咯喹啉喹酮合成基因; PSM,磷酸盐溶解微生物; PVK,Pikovskaya Medium;尾-PCR,热不对称交错PCR; T-DNA,转移DNA。已将核苷酸烯醇酶基因的核苷酸序列和相应的cDNA序列沉积在国家生物技术信息中心(NCBI)核苷酸数据库(https://wwwww.ncbi.nlm.nlm.nih.gov/nuccore/)无访问量表上的核苷酸数据库(https://wwwww.ncbi.nlm.nih.gov/nuccore/)。001325©2023作者†这些作者同样为这项工作做出了同样的贡献,三个补充数据和本文的在线版本提供了两个补充表。
目的:T 细胞在肾脏缺血再灌注损伤 (IRI) 中发挥病理生理作用,核因子红细胞 2 相关因子 2/kelch 样 ECH 相关蛋白 1 (Nrf2/Keap1) 通路调节 T 细胞反应。我们假设成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的 Keap1 敲除 (KO) 增强了 CD4+ T 细胞的 Nrf2 抗氧化潜力,而 Keap1 -KO CD4+ T 细胞免疫疗法可预防肾脏 IRI。结果:CD4+ T 细胞 Keap1-KO 导致 Nrf2 靶基因 NAD(P)H 醌脱氢酶 1、血红素加氧酶 1、谷氨酸-半胱氨酸连接酶催化亚基和谷氨酸-半胱氨酸连接酶修饰亚基显著增加。体外,Keap1-KO 细胞没有显示出衰竭迹象,在常氧条件下白细胞介素 2 (IL2) 和 IL6 水平显著降低,但在缺氧条件下干扰素 γ 水平升高。体内实验中,与接受未编辑对照 CD4+ T 细胞的小鼠相比,IRI 前过继转移 Keap1-KO CD4+ T 细胞可改善 T 细胞缺陷 nu/nu 小鼠的肾功能。与从对照肾脏中分离的未编辑 CD4+ T 细胞相比,IRI 后 24 小时从受体肾脏中分离的 Keap1-KO CD4+ T 细胞活性较低。创新:使用 CRISPR/Cas9 编辑小鼠 T 细胞中的 Nrf2/Keap1 通路是一种创新且有前景的免疫治疗方法,可用于治疗肾脏 IRI 以及其他实体器官 IRI。结论:CRISPR/Cas9 介导的 Keap1 -KO 增加了小鼠 CD4+ T 细胞中 Nrf2 调节的抗氧化基因表达,改变了对体外缺氧和体内肾脏 IRI 的反应。针对 T 细胞中 Nrf2/Keap1 通路的基因编辑是治疗免疫介导肾脏疾病的一种有前景的方法。抗氧化剂。氧化还原信号。38,959–973。
摘要:发生在前脑室下区 (SVZ) 和齿状回颗粒下区 (SGZ) 的成年神经发生受年龄、性激素和其他细胞和分子因素等参数的影响。我们之前发表的关于雄性 F344 大鼠的研究表明,神经发生衰退在 13 至 15 个月大期间尤为明显。我们还确定,这种与年龄相关的神经发生衰退的特殊模式是由氧化还原敏感转录因子核因子 (红细胞衍生 2) 样 2 或 NRF2 表达减少所介导的。在本研究中,我们旨在了解年龄增长和性激素 17β-雌二醇 (E2) 和孕酮 (P4) 对雌性大鼠神经干祖细胞 (NSPC) 的 NRF2 表达和再生功能的影响。在此背景下,我们已确定与雄性大鼠相比,雌性大鼠的 NSPC 功能与年龄相关的衰退的时间进展不同,并且发生得更早,主要在 7-9 个月大时。为了进一步研究这种 NSPC 衰老现象,我们分析了 2、6、9 和 14 个月大雌性 F344 大鼠。在 4 个衰老阶段,我们分别纳入完整大鼠 (Sham) 和卵巢切除大鼠 (OVX),以评估 E2/P4 的重要性。对实验组执行以下行为任务以研究 SVZ 和 SGZ NSPC 功能 - 精细嗅觉辨别、模式分离和 Morris 水迷宫中的平台反转。结果显示,与 OVX 相比,假手术动物的神经发生得到显著保护,尤其是在 6 月龄和 9 月龄时。这些结果也得到了发情阶段研究结果的支持,其中假手术大鼠在发情或发情前期阶段(循环中 E2 和 P4 增加)的表现优于其他阶段。目前,我们正在通过对不同 NSPC 亚型标志物(特别是 GFAP/Nestin、Sox2 和 Dcx)和增殖标志物(BrdU、MCM2)进行双重或三重免疫染色,以及 NRF2 及其下游靶标(如 NAD(P)H 醌脱氢酶 1 (NQO1))来检查四个年龄组中 NSPC 中 NRF2 表达和活性的变化。总之,这些
从国际空间站(ISS)的不同位置分离出属于甲基杆菌科家族的四种菌株。中,三个被鉴定为革兰氏阴性,杆状,过氧化氢酶阳性,氧化酶阳性,旋转细菌,被指定为IF7SW-B2 T,IIF1SW-B5和IIF4SW-B5,而第四次则被鉴定为甲基果脂型rhododesianum。这三种ISS菌株的序列相似性(指定为IF7SW-B2 T,IIF1SW-B5和IIF4SW-B5)的序列相似性在16S rRNA基因中<99.4%,在GyRB基因中为<97.3%,近距离的甲基杆菌属甲基杆菌是Inmanylobacterium indimum se2.11 t。此外,多级别序列分析将这三个ISS菌株置于M. Infimum的同一进化枝中。这三个ISS菌株的平均核苷酸身份(ANI)值<93%,数字DNA-DNA杂交(DDDH)值<46.4%,任何描述的甲基杆菌物种。基于ANI和DDDH分析,这三个ISS菌株被认为是属于甲基杆菌属的新物种。三个ISS菌株彼此显示100%的ANI相似性和DDDH值,表明这三个ISS菌株在各个流动期间分离出来,与不同位置分离出来,属于同一物种。这三个ISS菌株在25至30°C,pH 6.0至8.0和NaCl 0至1%的温度下最佳地生长。表型上,这三种ISS菌株与水生菌和M. terrae相似,因为与其他甲基杆菌相比,它们吸收了与唯一碳底物相似的糖。nov。提出了。类型应变为IF7SW-B2 T(NRRL B-65601 T和LMG 32165 T)。脂肪酸分析表明,ISS菌株产生的主要脂肪酸为C 18:1 -ω7c和c 18:1 -ω6c。主要的喹酮为泛素酮10,主要的极性脂质为二磷脂酰甘油,磷脂酰胆碱,磷脂酰甲醇,磷脂酰乙醇胺,磷脂酰甘油醇和未识别的脂质。因此,基于基因组,系统发育,生化和脂肪酸分析,IF7SW-B2 T,IIF1SW-B5和IIF4SW-B5的菌株被分配给甲基杆菌中的一种新物种,以及Ajmalii sp的甲基甲基甲虫。
a Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK b Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal *Email: gb453@cam.ac.uk Dek: A tyrosine-targeting bioconjugation reaction导致CAS9蛋白质肽结合物显示出细胞递送增加20倍。https://pubs.acs.org/doi/10.1021/acscentsci。0 C00940链接到“靶向酪氨酸靶向生物偶联反应”的链接残基半胱氨酸和赖氨酸是生物偶联化学的无可争议的拥护者。靶向其他氨基酸已被吹捧为改善蛋白质肽和蛋白质 - 蛋白质缀合物的合成的潜在方法,这些方法经过广泛研究,以其潜在的治疗能力,并用作理解生物学功能的工具。现在,加利福尼亚大学伯克利分校的一组研究人员针对溶剂曝光的酪氨酸残留物,以开发一种准备这种共轭物的方法。1,由于蛋白质的化学毒素不同,蛋白质肽和蛋白质 - 蛋白质结合物的合成可能很棘手,从而提出化学选择性和现场特异性挑战。2生物正交化学的使用已成功克服了其中的一些挑战,但通常需要冗长的合成才能掺入不自然的氨基酸。同时,使用天然蛋白质功能通常仅限于N-或C末端,或导致无选择的标记亲核残基(例如半胱氨酸或赖氨酸)。酶酪氨酸酶用于将溶剂暴露的酪氨酸残基氧化为Quinone官能团。由于这些原因,人们非常有兴趣扩展允许仔细阐述蛋白质体系结构的方法的工具箱。在他们在ACS Central Science发表的最新作品中,由Francis,Doudna和Fellman领导的团队描述了一种耦合两种生物分子的方法,分别含有酪氨酸和半胱氨酸残留物。随后,该组与硫化成分反应,从而导致两种底物之间形成新的共价键(图1)。这是基于团队以前在利用原位形成的奎因酮功能的经验,目的是与存在于脯氨酸残基和苯胺等生物分子上的其他亲核试剂的反应。3,4虽然大多数蛋白质通常贡献半胱氨酸或赖氨酸残基作为生物偶联反应的亲核成分,但形成了亲电矫正剂量子酮的形成,代表了一种有趣的Umpolung方法,具有潜力,可以扩展蛋白质生物偶联化学空间。
(Fitriyanto等,2011; Hibi等,2011)。一些甲状腺营养和杂营细菌含有吡咯烷酚(PQQ)(PQQ)和钙依赖性甲醇脱氢酶(CA-MDH)。该酶由形成α2/β2异二聚体的基因MXAF和MXAI编码,并将甲醇氧化为甲醛。此外,这些细菌中的许多具有称为XOXF的基因,编码了另一种依赖PQQ的MDH样蛋白,对CA-MDH表现出约50%的身份(Chistoserdova,Kalyuzhnaya,&Lidstrom,2009年)。与实验室培养物相比,与MXAFI相比,XOXF表达100倍(Bosch等,2008)相比,XOXF基因在甲基杆菌 /甲基肌肉菌属中高度表达。在植物的植物层定植(Delmotte等,2009)。2011年,据报道,LA 3+在甲基杆菌的生长培养基中添加了六倍的MDH活性,报告了Radiotolerans NBRC15690的生长培养基(Hibi等,2011)。La 3+诱导的酶被纯化,并被该细菌的XOXF基因编码。在对毛rad骨MAFF2116450的后续研究中,纯化的Ce 3+诱导的MDH也可以与该细菌的XOXF基因偶联(Fitriyanto等,2011)。推导的氨基酸序列显示了作为辅助因子的结合PQQ的基序。接下来,补充La 3+后,仅在甲醇上生长甲基肌肉质量AM1的δMXAF菌株,而琥珀酸酯上的生长与野生型没有差异(Nakagawa等,2012)。热酸性甲基营养的甲基氧化脂蛋白脂肪液的基因组仅具有XOXF基因。从La 3+ /Ca 2+培养基上生长的菌株AM1仅纯化一个MDH蛋白并将其鉴定为XOXF基因的乘积。MDH含有0.9个La 3+原子和每个二聚体Ca 2+的0.4个原子,EDTA处理显示La 3+紧密结合(Nakagawa等,2012)。这种属于门果肉芽素的极端粒细胞最初是在含有其原始泥锅中的水中的培养基上分离出来的(Pol等,2007,图。1)。没有泥锅的水生长非常差。表明负责这种效果的成分本质上是无机的,最终证明了泥锅水可以被灯笼(LN)取代(Pol等,2014)。甲基氧化脂脂溶剂的生长严格取决于培养基中Ln 3+的存在。显示了在具有Ce 3+浓度范围的培养基上生长的细胞的比例反应。ce 3+可以用La 3+,Pr 3+