摘要 - 电脑摄影(EEG)通过电极测量不同大脑区域的神经元活性。许多关于基于脑电图的情绪识别的现有研究并不能完全利用脑电图通道的拓扑。在本文中,我们提出了一个正规化的图形网络(RGNN),以用于基于EEG的情绪识别。rgnn认为不同大脑区域之间的生物拓扑结构是在不同的脑电图通道之间捕获局部和全球关系。特别是,我们通过图神经网络中的邻接矩阵对脑电图中的通道间关系进行建模,在图神经网络中,邻接矩阵的连接和稀疏性受到人脑组织的神经科学理论的启发。此外,我们提出了两个正规化器,即节点的对抗训练(NODEDAT)和情绪感知的分布学习(EmotionDL),以更好地处理跨主题的EEG EEG变化和嘈杂的标签。在两个公共数据集(种子和种子IV)上进行了广泛的实验,在大多数实验环境中表明,与最先进的模型相比,我们的模型的性能优越。此外,消融研究表明,所提出的邻接矩阵和两个正则化器为我们的RGNN模型的性能贡献了一致且显着的增益。最后,对神经元活动的调查揭示了基于脑电图的情绪识别的重要大脑区域和通道间关系。
本文的目的是使用巴西数据实施,比较和验证各种GDP预测技术,重点是确定本季度任何地方的精确预测的可扩展策略。我们分析了GDP预测文献的演变,从动态因素(DFM)到现代机器学习和重复出现的神经网络。为了评估每种方法的预测能力,我们使用一步和多个步骤的方法生成51个预测年份,此外,我们使用常规回归神经网络(RGNN)来平衡不规则的边缘数据。我们的分析表明,虽然更深的重复神经网络(例如LSTM)在多个预测中执行可靠的性能,但它们的总体性能不高于更简单的模型,例如MIDAS和梯度增强。此外,Lasso和Adalasso技术的应用在Nowcasting的背景下强调了它们的稳健性。这些发现表明,传统的经济模型和机器学习技术继续是GDP Nowcast的强大和有效的工具,深入学习方法需要更多的改进和更大的测试集,以便在这一领域充分发挥其潜力。
摘要 — 神经心理学研究表明,不同大脑功能区域之间的合作活动推动了高级认知过程。为了了解大脑不同功能区域内和之间的大脑活动,我们提出了一种新型神经学启发式图神经网络 LGGNet,用于学习脑机接口 (BCI) 的脑电图 (EEG) 的局部-全局图表示。LGGNet 的输入层由一系列具有多尺度 1D 卷积核和内核级注意力融合的时间卷积组成。它捕获 EEG 的时间动态,然后将其作为所提出的局部和全局图过滤层的输入。LGGNet 使用一组定义的具有神经生理学意义的局部和全局图,对大脑功能区域内和之间的复杂关系进行建模。在稳健的嵌套交叉验证设置下,在三个公开可用的数据集上对四类认知分类任务(即注意力、疲劳、情绪和偏好分类任务)评估了所提出的方法。 LGGNet 与 DeepConvNet、EEGNet、R2G-STNN、TSception、RGNN、AMCNN-DGCN、HRNN 和 GraphNet 等最先进的方法进行了比较。结果表明,LGGNet 的表现优于这些方法,并且在大多数情况下,改进具有统计意义(p < 0.05)。结果表明,将神经科学先验知识引入神经网络设计可以提高分类性能。源代码可以在 https://github.com/yi-ding-cs/LGG 找到