本文的目的是使用巴西数据实施,比较和验证各种GDP预测技术,重点是确定本季度任何地方的精确预测的可扩展策略。我们分析了GDP预测文献的演变,从动态因素(DFM)到现代机器学习和重复出现的神经网络。为了评估每种方法的预测能力,我们使用一步和多个步骤的方法生成51个预测年份,此外,我们使用常规回归神经网络(RGNN)来平衡不规则的边缘数据。我们的分析表明,虽然更深的重复神经网络(例如LSTM)在多个预测中执行可靠的性能,但它们的总体性能不高于更简单的模型,例如MIDAS和梯度增强。此外,Lasso和Adalasso技术的应用在Nowcasting的背景下强调了它们的稳健性。这些发现表明,传统的经济模型和机器学习技术继续是GDP Nowcast的强大和有效的工具,深入学习方法需要更多的改进和更大的测试集,以便在这一领域充分发挥其潜力。
主要关键词