Loading...
机构名称:
¥ 1.0

摘要 - 电脑摄影(EEG)通过电极测量不同大脑区域的神经元活性。许多关于基于脑电图的情绪识别的现有研究并不能完全利用脑电图通道的拓扑。在本文中,我们提出了一个正规化的图形网络(RGNN),以用于基于EEG的情绪识别。rgnn认为不同大脑区域之间的生物拓扑结构是在不同的脑电图通道之间捕获局部和全球关系。特别是,我们通过图神经网络中的邻接矩阵对脑电图中的通道间关系进行建模,在图神经网络中,邻接矩阵的连接和稀疏性受到人脑组织的神经科学理论的启发。此外,我们提出了两个正规化器,即节点的对抗训练(NODEDAT)和情绪感知的分布学习(EmotionDL),以更好地处理跨主题的EEG EEG变化和嘈杂的标签。在两个公共数据集(种子和种子IV)上进行了广泛的实验,在大多数实验环境中表明,与最先进的模型相比,我们的模型的性能优越。此外,消融研究表明,所提出的邻接矩阵和两个正则化器为我们的RGNN模型的性能贡献了一致且显着的增益。最后,对神经元活动的调查揭示了基于脑电图的情绪识别的重要大脑区域和通道间关系。

使用正则图的基于EEG的情绪识别...

使用正则图的基于EEG的情绪识别...PDF文件第1页

使用正则图的基于EEG的情绪识别...PDF文件第2页

使用正则图的基于EEG的情绪识别...PDF文件第3页

使用正则图的基于EEG的情绪识别...PDF文件第4页

使用正则图的基于EEG的情绪识别...PDF文件第5页

相关文件推荐

2021 年
¥1.0
2021 年
¥2.0
2025 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2025 年
¥2.0
2020 年
¥1.0
2024 年
¥14.0
2025 年
¥1.0
2025 年
¥7.0
2021 年
¥4.0
2024 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2024 年
¥2.0
2020 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
1900 年
¥4.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0