结肠癌是美国癌症的主要原因之一。结肠癌是由结肠癌细胞基因组中的许多基因突变发展而来的。长的非编码RNA(LNCRNA)会导致许多癌症(包括结肠癌)的发育和进展。lncRNA已经并且可以通过簇状的定期间隔短的短质体重复序列(CRISPR)相关的核酸酶9(CRISPR/CAS9)系统的聚类重复序列的基因编辑技术来纠正,以减少结肠癌细胞的增殖。但是,许多用于运输基于CRISPR/CAS9的疗法的当前输送系统需要更多的安全性和效率。基于CRISPR/CAS9的治疗药需要安全有效的递送系统,以更直接,更明确地靶向结肠中存在的癌细胞。本综述将提供有关使用植物衍生的外泌体样纳米颗粒作为纳米载体的效率和安全性的相关证据,以提供基于CRISPR/CAS9的疗法以直接靶向结肠癌细胞。
抗生素耐药性ESKAPE(屎肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和肠杆菌属)病原菌是对人类健康的全球威胁。ESKAPE病原菌是院内感染中最常见的机会性致病菌,相当一部分临床分离株对常规抗菌治疗不敏感。因此,能够有效对抗ESKAPE病原菌的创新治疗策略将带来巨大的社会效益和经济效益,并减轻成千上万患者的痛苦。在这些策略中,CRISPR(成簇的规律间隔的短回文重复序列)系统由于其高特异性而受到了格外的关注。遗憾的是,目前还没有基于CRISPR系统的直接抗感染治疗方法。本文就CRISPR-Cas系统在ESKAPE病原体研究中的应用进行综述,旨在为理想的新型药物研究提供方向,为解决后抗生素时代多重耐药菌(MDR)引起的一系列问题提供参考,但多数研究距离临床应用还有一定的距离。
1。smriti mallapaty。如何保护第一个“ CRISPR婴儿”引发道德辩论。自然。2022年2月25日。https://www.nature.com/articles/d41586-022-00512-w 2。Antonio Regalado。 CRISPR婴儿的创建者已从中国监狱释放出来。 MIT技术评论。 2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3. J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。Antonio Regalado。CRISPR婴儿的创建者已从中国监狱释放出来。MIT技术评论。 2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3. J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。MIT技术评论。2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3.J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。J. Benjamin Hurlbut。解码CRISPR的故事。MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。MIT技术评论。2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。David Cyranoski。什么Crispr-baby监狱判处男子进行研究。自然。2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。Patrick Foong。CRISPR婴儿:故事展开。Mercatornet。2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。海蒂·莱德福德(Heidi Ledford)。应该领导基因组编辑政策。2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。当归Peebles。CRISPR先驱期望在25年内看到基因编辑的婴儿。2022年4月4日。
结果与讨论:通过野生型(WT)和TGP PSLOX2突变型线的DNA测序确定了稳定转基因PEA系(TGP)的成功CRISPR/CAS9介导的LOX基因编辑(TGP)。还评估了这些线路的LOX活性,PUFA水平和VOC。Compared to WT peas, the TGP lines showed a signi fi cant reduction (p < 0.05) in LOX activity and in the concentration of key VOCs, including hexanal, 2-hexenal, heptanal, (E)-2-heptenal, (E,E)-2,4- heptadienal, 1-octen-3-ol, octanal, (E)-2-octenal (E,E)-2,4-非二烯和Furan-2-苯基。在TGP浮动中,两个必需的PUFAS,亚油酸和二酚酸的含量是LOX的已知底物,表明CRISPRPR介导的基因编辑的效率在最小化其氧化和PUFAS及其产品的进一步调节方面具有效率。vocs的集合
多倍体在禾本科植物中很常见,对传统育种提出了挑战。基因组编辑技术绕过了杂交和自交,能够在一代中对多个基因拷贝进行有针对性的修改,同时保持许多多倍体基因组的杂合背景。巴哈草(Paspalum notatum Flügge ́;2 n =4 x =40)是一种无融合生殖的四倍体 C4 物种,在美国东南部广泛种植,作为肉牛生产和公用事业草坪的饲料。叶绿素生物合成基因镁螯合酶(MgCh)被选为在四倍体巴哈草中建立基因组编辑的快速读出目标。含有 sgRNA、Cas9 和 npt II 的载体通过基因枪法递送到愈伤组织培养物中。通过基于 PCR 的检测和 DNA 测序对编辑植物进行了表征,并观察到高达 99% 的 Illumina 读数的诱变频率。野生型 (WT) 巴哈草的测序显示,MgCh 的序列变异水平很高,这可能是因为存在至少两个拷贝,可能包含八种不同的等位基因,包括假基因。MgCh 突变体表现出明显的叶绿素消耗,叶片绿度降低了 82%。两种品系显示出随时间推移的编辑进展,这与体细胞编辑有关。获得了嵌合 MgCh 编辑事件的无融合生殖后代,并允许在一系列叶绿素消耗表型中识别出统一编辑的后代植物。高度编辑的突变体的 Sanger 测序显示 WT 等位基因的频率升高,可能是由于频繁的同源定向修复 (HDR)。据我们所知,这些实验是首次报道将基因组编辑应用于多年生暖季草皮或牧草。该技术将加速巴哈草品种的开发。
白质消失 (VWM) 是一种由 eIF2B 亚基隐性变异引起的白质营养不良。目前,尚无治愈性治疗方法,患者常常英年早逝。由于其单基因特性,VWM 是开发 CRISPR/Cas9 介导的基因治疗的有希望的候选对象。在这里,我们在 VWM 小鼠中测试了一种双 AAV 方法,该方法编码 CRISPR/Cas9 和 DNA 供体模板以纠正 Eif2b5 中的致病变异。我们进行了测序分析以评估基因纠正率,并检查了对 VWM 表型(包括运动行为)的影响。序列分析表明,在目标基因座处超过 90% 的 CRISPR/Cas9 诱导的编辑是插入或缺失 (indel) 突变,而不是通过同源定向修复从 DNA 供体模板进行的精确校正。大约一半的 CRISPR/Cas9 治疗动物过早死亡。 VWM 小鼠在 7 个月大时运动技能、体重或神经系统评分均未改善,而 CRISPR/Cas9 处理的对照组则表现出诱导的 VWM 表型。总之,CRISPR/Cas9 在 Eif2b5 基因座处诱导的 DNA 双链断裂 (DSB) 未导致 VWM 变异的充分校正。此外,Eif2b5 中的插入/缺失形成会加剧 VWM 表型。因此,DSB 独立的策略(如碱基编辑或主要编辑)可能更适合 VWM 校正。
研究成果概要(中文):CRISPR-Cas9 是一种多功能技术,可应用于医疗。在 DNA 双链断裂后的修复途径中,与模板 DNA 同源重组 (HDR) 的修复有助于精确编辑,但同时,涉及碱基缺失或插入的 NHEJ 也以高频率发生。我使用 Traffic Light Reporter 系统进行了基于细胞的 HDR 增强因子筛选,该系统可以同时检测具有 HDR 和 NHEJ 的细胞,并确定了与 NHEJ 衍生细胞相比,HDR 衍生细胞中表达较高的几个基因。对这些基因的进一步基因本体分析表明,它们与 DNA 修复和细胞周期有关。
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
文章标题:评论:真菌细胞中的CRISPR/CAS12介导的基因组编辑:植物 - 真菌病理学中的进步,机制和未来方向作者:Chiti Agarwal [1],Vishnutej Ellur [1]附属机构[1]附属机构:华盛顿州立大学[1] ORCID IDS:0000-000-000-0003-41125-25-25-8880 [1] chiti.agarwal@gmail.com许可证信息:这项工作已在Creative Commons Attribution许可证下发布开放访问http://creativecommons.org/licenses/by/4.0/,只要适当引用任何原始工作,该工作就允许在任何媒介中进行无限制的使用,分发,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000129.v1预印本在线发布:2023年5月14日关键字:CRISPR,CRISPR/CAS12,真菌病原体,植物病原体