miRNA 调节介导。miRNA 是细胞生物学的重要调节剂,在癌症中经常发生改变。事实上,在我们研究的癌症环境中,许多 miRNA 已被描述为肿瘤抑制因子 [38–40]。已证明 miR-186 和 miR-195 可抑制 NSCLC 癌细胞系和组织样本中的增殖、迁移和侵袭 [41–47]。此外,与 I-II 期 NSCLC 患者相比,肿瘤分级较高且转移较多的 NSCLC 患者的血清 miR-186 水平较高。miR-133b 通常在胃癌中下调,其抑制与更具侵袭性的表型相关 [48–51]。在膀胱癌中,miR-186 和 miR-139 均被描述为相关的肿瘤抑制因子,其下调与侵袭和转移有关 [52, 53]。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecom-mons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
心血管疾病(CVD)仍然是全球发病率和死亡率的主要原因。随着CVD的恶化,将发生不可逆的心脏重塑,最终导致心力衰竭(HF)[1]。早期心脏重塑最初被认为是人体的主动补偿性改变,响应压力的增加,最近的研究表明,它与CVD的发病率和死亡率直接相关[2]。人类心脏组织由各种细胞类型组成,包括心肌细胞,心脏成纤维细胞,内皮细胞(EC),平滑肌细胞和一些心脏干细胞。此外,还有许多与CVD相关的暂时细胞,包括肥大细胞,巨噬细胞和淋巴细胞。几个心脏细胞的存在和相互作用形成了一个复杂的细胞间网络,该网络由许多信号通路组成,调节细胞 - 细胞连接和/或细胞 - 细胞细胞基质相互作用以及自分泌,旁分泌,内分泌等[3,4]。外泌体最近被确定为在细胞通信中起重要作用。除了丰富的生理和信号任务外,外泌体对于去除细胞是必需的
CRISPR 干扰 (CRISPRi) 是一种在哺乳动物细胞中沉默基因的高效方法,它采用酶失活形式的 Cas9 (dCas9) 与一个或多个与靶基因转录起始位点互补 20 个核苷酸 (nt) 的向导 RNA (gRNA) 复合。此类 gRNA/dCas9 复合物与 DNA 结合,阻碍目标基因座的转录。在这里,我们提出了一种替代的基因抑制策略,即使用活性 Cas9 与截短的 gRNA (tgRNA) 复合。Cas9/tgRNA 复合物与特定靶位点结合而不会触发 DNA 切割。当靶向转录起始位点附近时,这些短的 14-15 nts tgRNA 可有效抑制果蝇体细胞组织中几种靶基因的表达,而不会产生任何可检测到的靶位点突变。 tgRNA 在与 Cas9-VPR 融合蛋白复合时还可以激活靶基因表达或调节增强子活性,并且可以整合到基因驱动中,其中传统 gRNA 维持驱动,而 tgRNA 抑制靶基因表达。
摘要:长的非编码RNA(LNCRNA)是非编码的RNA分子,超过200个nu螺旋体,在转录,转录后和翻译水平上调节基因表达。在许多人类疾病中已经鉴定出LNCRNA的异常表达。 对诊断,预后和治疗技术的未来改善将通过对疾病病因的深入了解来促进。 心血管疾病(CVD)是全球死亡的主要原因。 心脏发育涉及LNCRNA,它们的异常与许多CVD有关。 本综述研究了LNCRNA在各种CVD中的关系和功能,包括动脉粥样硬化,心肌梗塞,心肌肥大和心力衰竭。 在其中,还将讨论LNCRNA在临床诊断,预后和治疗应用中的潜在利用。在许多人类疾病中已经鉴定出LNCRNA的异常表达。对诊断,预后和治疗技术的未来改善将通过对疾病病因的深入了解来促进。心血管疾病(CVD)是全球死亡的主要原因。心脏发育涉及LNCRNA,它们的异常与许多CVD有关。本综述研究了LNCRNA在各种CVD中的关系和功能,包括动脉粥样硬化,心肌梗塞,心肌肥大和心力衰竭。在其中,还将讨论LNCRNA在临床诊断,预后和治疗应用中的潜在利用。
microRNA是翻译后生物分子的小型非编码,当表达时,会改变其靶基因。据估计,microRNA调节了负责主要生理过程的所有人类蛋白质和所有蛋白质的60%的产生。在心脏腔内疾病的病理生理学中,有几个细胞产生microRNA,包括内皮细胞,血管平滑肌细胞,巨噬细胞,巨噬细胞,板块和心肌细胞。从各种细胞来源得出的microRNA之间存在一个恒定的串扰。动脉粥样硬化的启动和进展是由许多促炎和促性的microRNA驱动的。刺激性斑块破裂是急性冠状动脉综合征(ACS)造成心血管死亡的主要原因,并导致ACS后心脏重塑和纤维化。microRNA是斑块发展和转化为脆弱状态的强大调节剂,最终可能导致斑块破裂。越来越多的证据表明,在ACS之后,microRNA可能会抑制成纤维细胞增殖和疤痕,以及心肌细胞的有害凋亡,并刺激成纤维细胞重编程为诱导的心脏祖细胞。在这篇综述中,我们着重于心肌细胞衍生和心脏成纤维细胞衍生的microRNA的作用,这些microRNA参与了调节与car肌细胞和成纤维细胞功能以及动脉粥样硬化相关性心脏缺血相关的基因的作用。了解它们的机制可能会导致MicroRNA鸡尾酒的发展,这些鸡尾酒可能可能用于再生心脏病学。
基于CRISPR的摘要定向进化是一种有效的繁殖生物技术,可改善植物中的农艺特征。然而,使用单个单个指南RNA,其基因多样化仍然受到限制。我们在这里描述了多重的正交基础编辑器(MOBE),以及随机多重的SGRNA组装策略,以最大程度地提高基因多样化。bobe可以在不同的目标上诱导有效的正交安倍(<36.6%),CBE(<36.0%)和A&CBE(<37.6%),而SGRNA组装策略随机基础编辑各个目标上的基础编辑事件。与稻米乙酰辅酶A羧化酶(OSACC)的第34外显子的每个链中的130和84个靶标相应,我们观察到了随机双重双重和随机三重SGRNA库中的目标 - 折叠组合。我们使用MOBE和大米中的随机双重SGRNA文库进一步进行了OSACC的定向演变,并获得了更强的除草剂耐药性的单个或连接的突变。这些策略对于功能基因的原位定向演变很有用,并且可能会加速大米的性状改善。
摘要 基于 CRISPR 的定向进化是一种有效的育种生物技术,可改善植物的农艺性状。然而,使用单个单向导 RNA 其基因多样化仍然有限。我们在这里描述了一种多重正交碱基编辑器 (MoBE) 和一种随机多重 sgRNA 组装策略,以最大化基因多样化。MoBE 可以在不同的靶标上有效诱导正交 ABE (< 36.6%)、CBE (< 36.0%) 和 A&CBE (< 37.6%),而 sgRNA 组装策略将各种靶标上的碱基编辑事件随机化。对于水稻乙酰辅酶 A 羧化酶 (OsACC) 第 34 外显子的每一条链上的 130 个和 84 个靶标,我们在随机双 sgRNA 和随机三重 sgRNA 文库中观察到多达 27 294 种靶标-支架组合类型。我们进一步利用MoBE和随机双sgRNA文库对水稻中的OsACC进行了定向进化,获得了更强的除草剂抗性的单突变或连锁突变。这些策略可用于功能基因的原位定向进化,并可能加速水稻性状改良。
microRNA(miRNA)是与发育和疾病的许多方面相关的简短非编码和保存良好的RNA。microRNA控制与不同生物过程相关的基因的表达,并在许多基因的和谐表达中起着重要的作用。在中枢神经系统的神经发育过程中,miRNA在时空受到调节。在成熟的大脑中,miRNA的动态表达继续持续,突出了它们在神经元中的功能重要性。作为关键的大脑结构之一,海马是大脑主要功能连接的关键组成部分。海马中的基因表达异常导致神经发生,神经成熟和突触形成的扰动。这些干扰是几种神经系统疾病和行为缺陷的根源,包括阿尔茨海默氏病,癫痫和精神分裂症。有强有力的证据表明,miRNA中的异常是通过离子通道的不平衡活性,神经元兴奋性,突触可塑性和神经元凋亡来在海马中的神经退行性机制中造成的。一些miRNA会影响海马中的氧化应激,炎症,神经分化,迁移和神经发生。此外,神经变性中的主要信号传导级联反应,例如NF-Kβ信号传导,PI3/AKT信号传导和Notch途径,由miRNA密切调节。这些观察结果表明,MicroRNA是海马基因调节网络中的重要调节剂。在当前的综述中,我们着重于海马正常发育和神经发生的miRNA功能作用。我们还考虑海马中的miRNA对于病理生理途径中的基因表达机制至关重要。
1 四川农业大学园艺学院,成都 611130;2021305054@stu.sicau.edu.cn(WH);zhengaihong@stu.sicau.edu.cn(AZ);hh820423@163.com(HH);2021205028@stu.sicau.edu.cn(XL);2022205029@stu.sicau.edu.cn(QL);201906195@stu.sicau.edu.cn(LL);2022205026@stu.sicau.edu.cn(RL);huangzhi@sicau.edu.cn(ZH);13185@sicau.edu.cn(YQ);13920@sicau.edu.cn(YT);10650@sicau.edu.cn(HL); zhangf@sicau.edu.cn (FZ) 2 遵义师范学院生物与农业技术学院,遵义 563006,浙江;czf810@163.com 3 毕节市农业科学研究所,毕节 551700,浙江;majie_011@126.com 4 浙江大学园艺系,杭州 310058,浙江 * 通讯地址:qmwang@zju.edu.cn (QW); bsun@sicau.edu.cn (BS); 电话:+86-571-88982278 (QW); +86-28-86291848 (BS) † 这些作者对本文贡献相同。