近年来,小型非编码RNA(NCRNA)已成为癌症治疗领域的新参与者。其独特的能力直接调节遗传网络并靶向癌症将其定位为对现有小分子药物的有价值的补充。同时,基于NCRNA的小型治疗剂的进步重新点燃了对体内递送策略的效率。在这篇综述中,我们概述了基于NCRNA的小型癌症治疗领域中最新的临床和临床前研究。此外,我们阐明了将这些有希望的疗法成功地转化为临床实践所面临的关键挑战,并特别着眼于递送方法,旨在刺激创新方法来解决癌症治疗的这一基础方面。
。CC-BY-NC 4.0国际许可证的永久性。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2023年12月16日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.12.16.571081 doi:Biorxiv Preprint
作为CRISPR系统最有价值的特性,基于沃森-克里克碱基配对的可编程性已广泛应用于RNA传感器的工程设计。这些系统中的碱基配对提供了目标RNA和CRISPR效应子之间的连接,为体内和体外的RNA检测提供了高度特异性的机制。在过去的十年中,尽管在CRISPR爆炸式增长的时代开发了许多成功的RNA传感方法,但对CRISPR系统特性的深入了解和CRISPR家族成员的不断扩展表明,基于CRISPR的RNA传感器仍然是一个有前途的领域,可以从中设计出各种新功能和应用。在这里,我们系统地概述了设计CRISPR gRNA进行可编程RNA检测的各种策略,旨在阐明gRNA的可编程性在CRISPR支持的RNA传感器的现有局限性和未来发展中的作用。
miRNA 参与各种生命过程,包括细胞生长、发育、凋亡、细胞分化和病理性细胞活动。循环 miRNA 可在各种体液中检测到,包括血清、血浆、唾液和尿液。值得一提的是,miRNA 在生物体液循环中保持稳定,并从膜结合囊泡(称为外泌体)中释放出来,保护它们免受 RNase 活性的影响。研究表明,miRNA 通过靶向紧密连接和粘附连接分子来调节血脑屏障的完整性,还可以影响炎症细胞因子的表达。最近的一些研究已经检查了多发性硬化症中某些常用药物对 miRNA 水平的影响。在这篇综述中,我们将重点关注 miRNA 在多发性硬化症中的作用的最新发现,包括它们在 MS 病因和疾病的分子机制中的作用、利用 miRNA 作为诊断和临床生物标志物、使用 miRNA 作为多发性硬化症的治疗方式或靶点以及患者的药物反应,阐明它们作为疾病进展预测指标的重要性,并强调它们作为未来 MS 治疗方法的潜力。
结直肠癌 (CRC) 是世界第三大癌症,转移性 CRC 大大增加了全球癌症相关的死亡人数。转移涉及许多在分子水平上受到严格控制的复杂机制,而转移是 CRC 患者死亡的主要原因。最近,人们已经清楚,外泌体(由非肿瘤细胞和肿瘤细胞释放的细胞外小囊泡)在肿瘤微环境 (TME) 中起着关键的通讯介质作用。为了促进 TME 和癌细胞之间的通讯,非编码 RNA (ncRNA) 起着至关重要的作用,被认为是基因表达和细胞过程(如转移和耐药性)的有效调节剂。NcRNA 现在被认为是基因表达和许多癌症标志(包括转移)的有效调节剂。外泌体 ncRNA,如 miRNA、circRNA 和 lncRNA,已被证明会影响多种导致 CRC 转移的细胞机制。然而,将外泌体 ncRNA 与 CRC 转移联系起来的分子机制尚不清楚。本综述重点介绍了外泌体 ncRNA 在 CRC 转移性疾病进展中发挥的重要作用,并探讨了 CRC 转移患者可以选择的治疗方案。然而,外泌体 ncRNA 治疗策略开发仍处于早期阶段;因此,需要进一步研究以改进给药方法并找到新的治疗靶点,以及在临床前和临床环境中确认这些疗法的有效性和安全性。
摘要:目前,有许多改善CRISPR/CAS9活动的策略。一种众所周知的有效方法是指导RNA修饰。已经研究了许多化学指南RNA修饰,而天然发生的RNA修饰基本上没有探索。n1-甲基丙啶(M1ψ)是一种广泛用于mRNA治疗的RNA碱基修饰,并且在基因组编辑系统中应用有很大的希望。本研究的重点是研究N1-甲基甲基苯胺对CRISPR/CAS9功能的影响。体外切割分析有助于确定M1ψ引导RNA修饰的水平,该水平能够裂解目标底物。通过分析被标记的dsDNA底物裂解,我们计算了动力学参数和修饰指南RNA的特定分数。霓虹灯转染和数字PCR使我们能够评估哺乳动物细胞中修饰的指南RNA的活性。我们的研究表明,导向RNA中的M1ψ的存在可以帮助保留靶向基因组编辑,同时显着降低了CRISPR/CAS9在体外的脱靶效应。我们还证明了CAS9与含有M1ψ的引导RNA的复合物允许在人类细胞中进行基因组编辑。因此,将M1ψ的掺入引导RNA中支持CRISPR/CAS9在体外和细胞中的活性。
即使对于具有极为约束的设计的microRNA(miRNA)基因,生成新基因和遗传信息的机制也是鲜为人知的。所有miRNA主要转录物都需要折叠成干循环结构,以产生与结合和拒绝其mRNA靶标结合和倒置的短基因产物(约22 nt)。虽然大量的miRNA基因是古老且高度保守的,但已证明编码完全新颖的miRNA基因的短次级结构以谱系特异性的方式出现。模板切换是一种与DNA复制相关的突变机制,可以在单个事件中引入复杂的变化并为整个发夹结构生成完美的基础配对。在这里我们表明,模板开关突变(TSM)参与了灵长类动物谱系中6,000多个合适的发夹结构的出现,以产生至少18个新的人类miRNA基因,即自从灵长类动物起源以来就已经出现的miRNA的26%。虽然该机制似乎是随机的,但TSM生成的miRNA富含内含子,可以用其宿主基因表达它们。TSM事件的高频提供了进化的原材料。比从从头创建基因创建的其他机制快的速度要快,TSM生成的miRNA可以使遗传信息的近乎静止状态和快速适应不断变化的环境。
单变量和多元COX回归分析。我们确定年龄,性别,T阶段和风险评分是独立的预后因素(图6a-b)。接下来,产生了包含风险评级和独立预后因素的列诺图,以预测1、3和5年的OS发生率(图。6C)。 红线指示了20名患者和NOMO分数以及1、3和5年OS发病率的信息。 NOMO在低风险组中的得分低于高风险组(图 6d)。 风险评分的AUC是所有因素中最大的。 进行一致性指数和ROC分析,以预测风险评分在预测泌尿系统患者预后时的唯一性和敏感性。 风险评分的一致性指数和ROC曲线下的面积(AUC)是风险评分的最高(图) 6e-f)。6C)。红线指示了20名患者和NOMO分数以及1、3和5年OS发病率的信息。NOMO在低风险组中的得分低于高风险组(图6d)。风险评分的AUC是所有因素中最大的。一致性指数和ROC分析,以预测风险评分在预测泌尿系统患者预后时的唯一性和敏感性。风险评分的一致性指数和ROC曲线下的面积(AUC)是风险评分的最高(图6e-f)。
甲基化和ncRNA作为表观遗传修饰的两个重要调控因子,其异常表达在肿瘤中已被广泛证实。二者之间复杂的相互作用是胃肠道肿瘤(包括食管癌、胃癌、结直肠癌、肝癌和胰腺癌)恶性表型、预后不良和耐药性形成的关键。因此,本文对胃肠道肿瘤中ncRNA与甲基化修饰的相互关系过程进行了综述,包括甲基化酶调控ncRNA的具体机制、ncRNA调控甲基化修饰的分子机制以及ncRNA与甲基化修饰相互作用与肿瘤临床特征的相关性,并讨论了ncRNA与甲基化修饰在临床诊断和治疗中的潜在价值。