摘要:苹果的苦腐是由不同的Colletotrichum物种引起的一种经济重要的全球疾病,具体取决于许多因素,例如气候,地理,其他宿主和作物管理实践。培养,形态和基于单位液测序的方法用于识别Colletotrichum物种的有效性受到严重限制,而可用于描述物种的多核序列分型方法是昂贵,时间密集的,并且需要高专业知识。我们开发了以下九种coltotrichum物种的物种特异性水解探针实时PCR分析,在美国中大西洋中引起苦腐腐烂。来自阿司霉菌物种复合物的若虫。在搜索14个基因区域后,我们在其中5个目标物种中设计了底漆和探针。四个引物 - 探针套装对被复式。灵敏度测试显示出可检测到0.5 pg DNA。这些实时PCR分析将对这些关键的Colletotrichum物种提供快速而可靠的识别,对于旨在阐明其生物学,流行病学和管理苹果的研究至关重要,因为在美国生产和消耗的树木水果。
实施实验方案的条件,用于评估抗药性情况下物质的残余效率2。这些数据通常由工厂的植物药物公司和技术机构提供; - 有关本说明中描述的抵抗病例的科学文献或其他植物致病组织。所有这些信息都有助于本说明中描述的阻力案例的总体知识。在发生电阻和电阻频率(如果已知后一个数据)的发生频率时,葡萄园效率损失的风险被认为是平均水平的。该警报是根据个体的抵抗表型和农艺背景和流行风险调节的。活性物质,动作方法和分类本说明列出了授权产品在起草时进入授权产品组成的所有活性物质,以保护葡萄藤免受霉菌,白粉病,灰色腐烂和黑色腐烂的侵害。表中指示的建议主要是为了防止和专门管理抵抗现象,作为维持长期效率的前提条件。取决于情况,要么限制甚至停止最近检测到的抗性的进度,要么以优化在很大程度上确定的抗性的作用方法中的有效性。最后,这是一个限制杀菌剂重复应用的负面影响的问题,由于抵抗的现象,杀菌剂的效果降低了,甚至是无用的。Each mode of action is associated with the codes offered (1) in the unified classification of the R4P network (www.r4p-inra.fr/; DOI 10.17605/OSF.io/UBH5/), and (2) in the classification of the FRAC (Codes Mode of Action and Target Code separated by "/"; http://www.frac.info/).
河流,小溪,溪流是在将源头与插座连接起来的土地覆盖物中发生的生物,化学和物理过程的集成商。在流域中人类和动物病原体的动态已在各种情况下进行了广泛研究,从而优化了疾病风险的降低。并行,有一种新兴的意识,即可能还可以通过地表水传播作物病原体,尤其是在用于灌溉时。但是,在整个过程中,没有关于潜在的植物病原体存在的程度 - 也没有关于其动态的程度。在这里,我们比较了假单胞菌(PSY)和软腐烂的果皮杆菌(SRP)种群的季节性动态,沿着Durance River的270公里,从上游高山河(Alpestream Alpine)到达了与Rhone河的下游农业生产区。在2016年和2017年秋季,冬季,春季和夏季在21个地点收集的168个样品中,在所有采样地点均检测到PSY菌株,在人口密度的156个样品中,在最高10 5细菌L -1的人口密度下都检测到PSY菌株。相比之下,在98个样品中检测到SRP菌株,主要来自河的南部,人口密度不超过3´10 4细菌L -1。在每个采样位点表征的生物学和化学参数中,温度是唯一解释了两个物种复合物种群大小的可变性的唯一因素。PSY密度随温度升高而降低,而SRP密度随温度升高而增加。SRP的河流种群主要由多功能胸膜杆菌和水生假子组成,它们的流行病学重要性鲜为人知。仅观察到少数几个因其流行病学影响而被称为其流行病学影响的果蝇菌株。相比之下,所有地点的PSY种群都是由从其他研究中以广泛宿主范围及其地理和栖息地无处不在的遗传谱系为主的。我们的观察结果表明,可以利用对SRP的河水进行监视来发出诊断和管理反应,以避免疾病爆发。相反,由于这组细菌,由于没有规则和广泛的疾病暴发,整个集水区的持续存在表明,监视应集中在土地使用,河水条件和农艺学实践的未来变化上,这些实践可能会破坏当前在检查中持Psy暴发的机制。
作者:HA Ketta · 2021 · 被引用 19 次 — 结论:可能已经使用各种木霉菌对引起普通菜豆和豌豆根腐病的病原体进行生物管理……
Brassica Juncea(印度芥末)是一种至关重要的油料作物,非常容易受到菌核病菌根菌腐烂的影响,这是一种严重影响农作物产量和质量的病原体。这项研究评估了种子启动与生物控制剂的作用,包括枯草芽孢杆菌,Trichoderma viride及其组合对两种在田间条件下的繁殖芽孢杆菌(Rh30和Varuna)的两种。病原体接种,并在接种后10和20天(DAI)评估形态学,生化和与产量相关的参数。结果表明,枯草芽孢杆菌和T. viride的联合应用显着改善了植物高度,根和芽生物量以及茎直径。生化分析显示,二级代谢产物(如类黄酮,酚类和抗坏血酸)以及抗氧化酶的活性增加,包括过氧化氢酶(CAT),多酚氧化酶(PPO)(PPO)和过氧化物酶(POX)。这些变化与减少疾病症状相关,例如较短的茎病变长度,较少的菌根和茎损伤百分比降低。此外,在用生物控制剂处理的植物中,可以显着改善诸如每植物的小硅藻的数量,种子大小和千分光的属性属性。联合治疗的表现优于枯草芽孢杆菌或T. viride的个体应用,证明了其在降低疾病严重程度和提高产量方面的效果。这些发现提供了用于管理油料种子作物生物胁迫的化学方法的可持续替代方法。这项研究强调了将生物控制剂整合到农作物管理实践中的潜力,以提高对硬核腐烂的耐药性,并提高Juncea的生产力。
农产品,使其成为满足各种需求的首选。此外,棕榈油发挥了至关重要的经济作用,对生产国,尤其是马来西亚和印度尼西亚的国内生产总值(GDP)做出了重大贡献(Jazuli等,2022)。为了确保一致的生产并支持其经济重要性,油棕行业的可持续性至关重要(Siddiqui等,2021)。油棕种植园面临各种植物疾病和害虫的显着威胁,由真菌Ganoderma Boninense引起的基础茎腐病(BSR)是最关键的挑战,尤其是在马来西亚和印度尼西亚(Baharim等人,2024年,2024年; Liaghat等人; Liaghat等人,2014年)。BSR显着降低了产量,通常会降低50%至80%,并且可能在成熟的油棕架上导致高达80%的死亡率到其25年寿命的中点(Murphy等,2021)。年轻的棕榈通常在显示症状的6 - 24个月内屈服,而成熟的棕榈也可以额外生存2 - 3年(Siddiqui等,2021)。病原体感染了树干的木质部,破坏了水和营养分布。这会导致症状,例如黄色和坏死叶,未打开的长矛,冠层尺寸减小以及特征性的裙子状冠状形状(Baharim等,2024)。然而,这些叶面症状通常出现在感染的晚期阶段,使得早期发现很难(Baharim等,2024)。最大程度地减少BSR的影响仍然是产生油棕国家的主要挑战,尤其是马来西亚和印度尼西亚(Baharim等,2024)。,例如,Maeda-Gutiérrez等。早期发现BSR感染可以及时治疗感染的油棕,从而防止了对树的进一步损害(Husin等,2020)。BSR检测可以大致分为三种方法:手动,基于实验室和远程技术(Husin等,2020)。传统的手动方法涉及劳动密集的视觉检查,这些视觉检查通常对大型种植园而言通常不具体(Husin等,2020)。相比之下,实验室程序,例如Ganoderma选择培养基(GSM),聚合酶链反应(PCR)和与多克隆抗体(ELISA-PABS)的酶连接的免疫吸附测定是时间耗时,昂贵,并且缺乏精确。此外,这些方法通常只有在疾病已经明显升级时才产生结果(Bharudin等,2022; Tee等,2021)。遥感技术包括基于基的方法,例如陆层激光扫描(Husin等,2020)和电子鼻系统(Abdullah等,2012),以及基于UAV的成像(Ahmadi等,2023; Baharim等,2023)和Satellite Platferal(2021)和2021的空中方法。然而,这些方法通常面临诸如高运营成本,有限的空间解决方案以及在广泛采用方面的困难之类的挑战。这强调了对早期检测BSR的更快,更具成本效益的方法的关键需求(Bharudin等,2022)。深度学习的进步在各种计算机视觉任务中取得了巨大的成功,尤其是在图像分类中(Barman等,2024)。同样,Ahad等人。卷积神经网络(CNN)已成为视觉识别的主要结构(Barman等,2024)。(2020)评估了五个CNN模型,包括Alexnet(Krizhevsky等,2012),Googlenet(Szegedy等,2015),Inception v3(Szegedy等,2016),2016年),Resnet 18和Resnet 18,and Resnet 50(He He et and for Goognet coogne for Anee for Sneas and and and and and and nine nine nine nine nine nine nine nine nine nine nine类型, 99.72%。(2023)证明了CNN对水稻疾病分类的潜力,其中一个集合框架(DEX)
通过强光 - 膜相互作用产生激子 - 极性的产生代表了量子现象的新兴平台。基于胶体纳米晶体的极化系统的一个重大挑战是能够在室温下以高保真度操作。在这里,我们通过与Fabry-Pérot光腔的CDSE纳米片(NPL)偶联(NPLS)偶联,演示了室温的生成量 - 极光量。量子古典计算准确地预测了许多黑暗状态激子与光学允许的极化状态之间的复杂动力学,包括实验观察到的较低的北极星pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Pho-To-To-To-Pho-To-To-To-Pho-To-To-Pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Plo-To-To-Palliminencence浓度的浓度在较高的平面量较高时,随着蛀牙的越来越较大,较高的平面矩处的浓度。在5 K处测得的Rabi分裂与300 K时相似,从而验证了该极化系统的温度无关操作的可行性。总体而言,这些结果表明,CDSE NPL是促进室温量子技术发展的绝佳材料。
日期 事件 已用天数 22 年 9 月 13 日 判决结果 0 22 年 11 月 15 日 SJA 签署了审后行动 SJA 审查第 63 页 22 年 11 月 21 日 召集机构签署了 CA 行动第 69 页 22 年 11 月 23 日 判决入禀 (EOJ) 71 22 年 12 月 28 日 ROT 和附件发送给 MJ(第一次尝试) 106 22 年 1 月 4 日 MJ 收到 ROT 和附件以供验证 113 23 年 1 月 11 日 MJ 签署了验证文件 120 23 年 1 月 13 日 ROT 和附件发送给记录保管人 122 23 年 3 月 7 日 辩方请求加快审后处理 175 23 年 3 月 10 日 NORA 签署 178 CCA 下令提交日期 265 7 月 23 日 CCA 收到 ROT 和附件 297
路易斯安那州水稻病害 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ....................................................................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... .......................................................................................................................................
• 豌豆和小扁豆根部次生代谢物/多酚对根腐病的影响。• 利用分子育种和常规育种提高豌豆和小扁豆的根腐病抗性并快速释放品种。• 燕麦镰刀菌毒素敲除分离株的宿主-病原体相互作用• 小扁豆的基因编辑。• 表征 SK 中丝囊霉和镰刀菌种群的多样性和丰度。• 扩大加拿大西部丝囊霉基因组资源。• 优化作物轮作以减轻小扁豆和豌豆根腐病对丝囊霉的 RNAi 控制。• 对丝囊霉的 RNAi 控制• 小扁豆和苜蓿根部感染模型中根腐病的内生控制。• 使用从土壤中分离的细菌对丝囊霉根腐病进行生物防治。• 使用生物防治、天然产物和耐受品系进行 IPM 金字塔式推广。