105 并且也可根据 CC0 许可使用。 (未经同行评审认证)是作者/资助者。 本文是美国政府作品。 它不受 17 USC 版权的约束。 此预印本的版权持有者此版本于 2023 年 6 月 28 日发布。;https://doi.org/10.1101/2023.01.27.525958 doi:bioRxiv 预印本
105 并且也可根据 CC0 许可使用。 (未经同行评审认证)是作者/资助者。 本文是美国政府作品。 它不受 17 USC 版权的约束。 此预印本的版权持有者此版本于 2023 年 1 月 28 日发布。;https://doi.org/10.1101/2023.01.27.525958 doi:bioRxiv 预印本
•Sotorasib(AMG-510)和Adagrasib(MRTX849)在具有致癌性KRAS G12C突变的肺癌患者中表现出临床益处。•初始反应的深度/速率以及单一疗法益处的耐用性都受到电阻发作的限制。•最近在临床前模型和临床样本中发布的数据确定了RAS同工型或其他旁路基因组病变中的其他致癌改变是获得性抗性的潜在机制。但是,与一半以上患者相关的耐药性的特征未通过可用的治疗样品的基因组测序来定义。•在这项研究中,通过多模式基因组,转录组和质谱法基于磷酸蛋白酶学的分析,对几种临床前的sotorasib和Adagrasib抗性模型进行了分析,我们将信号网络的重新透射视为肿瘤逃生的非基因组机制。•我们进一步确定了RAS(ON)多选择性抑制剂及其组合是克服对该机制抗性的治疗方法。
摘要:三维数字技术在考古站点的维护和监测中很重要。本文着重于结合陆地激光扫描和无人驾驶飞机(Phantom 4 Pro)摄影测量法,以建立三维模型和相关的Beaufort Castle(南黎巴嫩Arnoun)的数字文档。两种技术之间的总体差异足以生成收敛数据。因此,将陆地激光扫描和Phantom 4摄影测量数据对准并在反射后合并为兼容扩展。基于混合数据云的三维(3D)模型,具有平面和垂直几何形状。这项研究证明了在3D数字文档中使用陆地激光扫描和摄影测量法的潜力,以及对黎巴嫩考古遗址的空间分析。
字数:4999 标题:ImmunoPET 检测治疗反应 关键词:ImmunoPET、分子成像、激酶、肿瘤学、治疗诊断学
儿童高级别胶质瘤 (pHGG),包括弥漫性中线胶质瘤 (DMG) 和非中线肿瘤,仍然是最致命的肿瘤诊断之一(以下均称为“ pHGG ”)。针对关键致癌受体酪氨酸激酶 (RTK) 驱动因素的靶向治疗方案已得到广泛研究,使用小分子 RTK 抑制剂,但缺乏能够重现 pHGG 生物学的适当体内模型一直是一个研究挑战。值得庆幸的是,动物模型方面已取得许多最新进展,包括 Cre 诱导转基因模型以及宫内电穿孔 (IUE) 模型,它们可以紧密重现人类 pHGG 肿瘤的显着特征。测序研究发现,超过 20% 的 pHGG 存在血小板衍生的生长因子-α (PDGFRA) 改变,使得通过靶向酪氨酸激酶进行生长因子建模和抑制成为一个有趣的领域。由于其他生长因子(包括 FGFR、EGFR、VEGFR 以及 RET、MET 和 ALK)也经常发生改变,因此也有必要对这些受体进行建模。我们在此回顾了小鼠建模和在临床环境中对最重要的 RTK 进行精确靶向的最新进展。我们还回顾了该领域的最新研究,其中包括在临床前或临床环境中用于治疗 pHGG 的几种小分子 RTK 抑制剂。
在默认配置下,NEO-M8P 流动站将尝试根据收到的校正数据提供最佳定位精度。一旦收到 RTCM 3 消息的输入流,它将进入 RTK 浮动模式。一旦流动站解决了载波相位模糊度,它将进入 RTK 固定模式。当流动站处于 RTK 固定模式时,相对精度可以预期精确到厘米级。通常需要至少 2 分钟,流动站才能解决载波模糊度并从 RTK 浮动模式转到 RTK 固定模式。此时间段的长度称为收敛时间。
在所有中枢神经系统肿瘤中,神经胶质瘤是最常见的。如今,研究人员正在寻找更有效的治疗方法以及早期诊断的方法。受体酪氨酸激酶(RTK)是肿瘤学的主要靶点,小分子 RTK 抑制剂的开发已被证明可成功治疗癌症。RTK 及其细胞内信号通路的突变或异常激活与多种恶性疾病有关,包括胶质母细胞瘤。对恶性神经胶质瘤进化理解的进展导致了 RTK 靶向治疗,该疗法具有很高的能力,可提高治疗反应并降低毒性。在本综述中,我们介绍了目前用于开发癌症治疗的最重要的 RTK(即 EGFR、IGFR、PDGFR 和 VEGFR)以及 RTK 相关药物在胶质母细胞瘤治疗中的潜力。此外,我们还关注一些目前处于不同研究阶段甚至临床阶段的治疗药物,这些药物被证明适合作为胶质母细胞瘤治疗的再利用候选药物。
受体酪氨酸激酶 (RTK) 共表达促进肿瘤耐药性,这是由于磷脂酰肌醇-3'-激酶/蛋白激酶 B 和 KRAS/细胞外信号调节激酶信号通路等存在冗余。致癌 RTK 肝细胞生长因子受体 (MET)、表皮生长因子受体 (EGFR) 和人表皮生长因子受体 2 (HER2) 之间的串扰与肿瘤对 RTK 靶向疗法的耐药性有关。方法:在相关肾细胞癌患者来源的异种移植模型中,我们使用 89 Zr 标记的抗 RTK 抗体 (免疫 PET) 奥那妥珠单抗、帕尼单抗和曲妥珠单抗分别监测 MET、EGFR 和 HER2 蛋白水平,在使用模型对其有耐药性(西妥昔单抗)或敏感(INC280 和曲美替尼)的药物治疗期间。结果:西妥昔单抗治疗导致肿瘤持续生长,以及免疫 PET 和细胞水平的离体肿瘤中所有 RTK 蛋白水平增加。相反,在双重 MET/丝裂原活化蛋白激酶抑制后,肿瘤生长明显减缓,并且与 RTK 水平降低相对应。结论:这些数据表明 RTK 靶向免疫 PET 可用于注释 RTK 蛋白表达变化并告知肿瘤对靶向治疗的反应。
受体酪氨酸激酶 (RTK) 是一种跨膜细胞表面蛋白,可充当信号转导器。它们调节细胞增殖、凋亡、分化和代谢等基本过程。RTK 变异发生在多种癌症中,这突显了其在癌症进展中的关键作用以及作为合适治疗靶点的作用。然而,由于耐药性的出现,小分子 RTK 抑制剂的使用受到了限制,这凸显了对多效抗癌剂的需求,这种抗癌剂可以替代现有药物或与现有药物联合使用,以增强治疗效果。姜黄素是一种有吸引力的治疗剂,主要是因为它具有强大的抗癌作用、广泛的靶点范围和最小的毒性。在姜黄素的众多已记录靶点中,RTK 似乎是姜黄素介导抑制的主要节点之一。许多研究发现,姜黄素影响 RTK 激活及其下游信号通路,导致癌细胞凋亡增加、增殖减少和迁移减少(体外和体内实验)。本文重点介绍姜黄素如何通过抑制 RTK 和下游信号通路(如 MAPK、PI3K/Akt、JAK/STAT 和 NF- κ B 通路)发挥抗癌作用。本文还分析了姜黄素和 RTK 抑制剂的联合研究,重点介绍了它们的共同分子靶点。