我们从理论上证明了通过施加平面塞曼场可以在二维 Z 2 拓扑绝缘体中实现具有稳健角态的二阶拓扑绝缘体。塞曼场破坏了时间反演对称性,从而破坏了 Z 2 拓扑相。然而,它尊重一些晶体对称性,因此可以保护高阶拓扑相。以 Kane-Mele 模型为具体例子,我们发现沿锯齿边界的自旋螺旋边缘态被塞曼场隔开,而在两个锯齿边缘的交叉点处出现了带隙内角态,该角态与场的方向无关。我们进一步表明,角态对平面外塞曼场、交错亚晶格势、Rashba 自旋轨道耦合和蜂窝晶格的屈曲具有稳健性,使它们在实验上可行。在著名的 Bernevig-Hughes-Zhang 模型中也可以发现类似的行为。
在过去十年中,混合有机无机钙钛矿 (HOIP) 已成为光电子学的重要材料家族。低陷阱密度 1 和长载流子扩散长度 2 – 5 使得太阳能电池的效率超过 20% 6 – 9;接近统一的光致发光量子产率和可调发射使高性能发光二极管 (LED) 能够覆盖可见光和近红外光谱的部分 10 – 12;而大光增益使得脉冲和连续波光泵浦激光的阈值都很低 13 – 17。由于具有高迁移率 18 – 21 和介电常数 22,这些材料也被探索用作光电探测器 23、24。此外,它们的较大 Rashba 分裂 25、26 和较长的自旋寿命 27 – 29 激发了对自旋电子学应用的研究 30 – 32。HOIP 具有灵活的晶体结构和可调节的有机-无机混合成分。这使得可以加入手性配体 33 – 37,从而使钙钛矿可用于手性光电子 38、39、铁电 40 – 42 和手性自旋电子 43、44 应用。
最近,Kostelecký 和 Samuel [1] 证明,在弦场论的背景下,当扰动弦真空不稳定时,由张量场控制的洛伦兹对称性 (LS) 破坏是自然的。Carroll 等人 [2] 在电动力学的背景下,研究了在修正的陈-西蒙斯拉格朗日空间中,即在 (3 + 1) 维中,存在背景矢量场的理论和观察结果,这种空间保持了规范对称性,但破坏了洛伦兹对称性。这些研究的目的之一是扩展可能涉及 LS 破坏的理论和模型,以寻找可以回答通常物理学无法回答的问题的基础物理理论。从这个意义上讲,标准模型 (SM) 已成为这些扩展的目标,这些扩展以 LS 破坏为特征,最终形成了我们今天所知道的扩展标准模型 (ESM) [3, 4]。近年来,LS 破坏已在物理学的各个分支领域得到广泛研究,例如磁矩产生 [5]、Rashba 自旋轨道相互作用 [6]、Maxwell-Chern-Simons 涡旋 [7]、涡旋状结构 [8]、卡西米尔效应 [9, 10]、宇宙学
特征值。12如果系统的初始状态是测量的特征状态之一
具有原子厚度的二维材料通常比其散装对应物具有优越的可调性,对新型纳米技术显示出巨大的希望。在分层的过渡金属二核苷元素IRTE 2中表现出由电荷顺序诱导的复杂结构扭曲,导致其相应单层材料的应用产生困难。在这里,使用第一个原理计算,我们证明在IRTE 2单层表面沉积Na可以抑制结构变形以形成稳定的Nairte 2板。它自然会破坏反转对称性,以实现Rashba型自旋分裂以进行潜在的自旋应用。此外,引入的空的na频带和IRTE 2单层的价带可以通过垂直电场的应用来反转,从而实现了从正常绝缘体到拓扑绝缘子的量子相变。这样的电场控制拓扑相变是实现拓扑场效应晶体管的希望。这些发现不仅提供了一种可行的方法来稳定IRTE 2单层,而且还扩大了其在旋转和低衰减的托泊托管中的应用。
一维拓扑超导体的边界可能导致马约拉纳零模式的出现,其非平凡交换统计数据可用于量子计算。在分支纳米线网络中,可以通过时间相关地调整拓扑非平凡参数区域来交换马约拉纳模式。在这项工作中,我们模拟了由 p 波超导 Rashba 线制成的 T 形结中四种马约拉纳模式的交换。我们推导出(准)绝热编织时间的具体实验预测,并确定了成功的马约拉纳交换过程的几何条件。此外,我们证明在绝热极限下,门控时间需要小于超导序参数平方的倒数,并与门控电位成线性比例。此外,我们展示了如何避免在分支纳米线系统中在窄结的线交叉点处形成额外的马约拉纳模式。最后,我们提出了一种多量子比特设置,以实现通用量子计算。
摘要:我们预测磁性铬基过渡金属二硫属化物 (TMD) 单层在其 Janus 形式 CrXTe(其中 X = S、Se)中具有非常大的自旋轨道扭矩 (SOT) 能力。Janus 结构固有的结构反演对称性破坏导致巨型 Rashba 分裂产生较大的 SOT 响应,相当于在非 Janus CrTe 2 中施加 ∼ 100 V nm −1 的横向电场所获得的响应,这完全超出了实验范围。通过对精心推导的 Wannier 紧束缚模型进行传输模拟,发现 Janus 系统表现出与最有效的二维材料相当的 SOT 性能,同时由于其平面内对称性降低,还允许无场垂直磁化切换。总之,我们的研究结果表明,磁性 Janus TMD 是超紧凑自感应 SOT 方案中终极 SOT-MRAM 设备的合适候选者。关键词:自旋轨道扭矩、过渡金属二硫属化物、二维材料、范德华铁磁体
cERH 2 AS 2是一个多相超导体,t c = 0.26 k。两个超导(SC)阶段SC1和SC2观察到的磁场h平行于与四方单位细胞的C轴平行于t型型单位电池的C轴,已解释为偶数和奇数SC状态,在quant-Parity SC状态下,在一个可能的rash iS sy-0 rash y rash sy-0 rash y rash中分离为µ 0。位于全球中心对称晶格的局部非中心对称环境中的CE站点的自旋轨道耦合。在温度t0≈0.4k以下的另一个有序状态(I阶段I)的存在表明H ∗过渡的替代解释:它分离了混合的SC+I(SC1)和纯SC(SC2)状态。Here, we present a detailed study of higher quality single crystals of CeRh 2 As 2 , showing much sharper signatures at T c = 0.31 K and T 0 = 0.48 K. We refine the T - H phase diagram of CeRh 2 As 2 and demonstrate that T 0 ( H ) and T c ( H ) lines meet at µ 0 H ≈ 6 T, well above H ∗ , implying no influence of Phase I on the SC phase switching.与金茨堡 - 陆理论的基本分析表明,这两个顺序之间的竞争较弱。
绝大多数非常规超导体都具有简单的单组分相图。这是令人惊讶的,因为 3 He 中的超流动性质( 1 )以及可以预期简并或近简并现象将由许多非常规超导电子机制产生的事实( 2 )表明,许多材料应该具有温度 - 磁场相图,并且在超导状态下不同超导序参量之间会发生转变。然而,到目前为止,唯一已证实在环境压力下具有此类相图的化学计量超导体是 UPt 3 ( 3 – 5 )。本文,我们报告在重费米子材料 CeRh 2 As 2 中发现了此类相图。实验表明,尽管 CeRh 2 As 2 的超导转变温度 T c 仅为 0.26 K,但它具有高达 14 T 的极高超导临界场。此外,当沿晶体 c 轴施加磁场时,超导状态在 ~4 T 处包含一个明确的内部相变,我们使用几个热力学探针对其进行了识别。我们还认为,这些观察结果来自与 UPt 3 不同的物理原理;CeRh 2 As 2 的关键超导特性可能是局部反演对称性破坏的表现,以及随之而来的 Rashba
摘要:“量子材料”是指其性质“无法用半经典粒子和低级量子力学来描述”的材料,即晶格、电荷、自旋和轨道自由度紧密交织在一起的材料。尽管它们具有有趣而奇特的特性,但总体而言,它们似乎远离微系统的世界,即微纳集成设备,包括电子、光学、机械和生物组件。关于铁性材料,即具有铁磁和/或铁电序的功能材料,可能与其他自由度(如晶格变形和原子畸变)耦合,我们在这里讨论一个基本问题:“我们如何弥合专注于量子材料和微系统的基础学术研究之间的差距?”本文从半导体的成功故事出发,旨在设计一个路线图,以开发基于铁性量子材料的非常规计算的新技术平台。通过描述 GeTe 这一典型案例(新一类材料(铁电 Rashba 半导体)的父化合物),我们概述了如何通过从微观建模到设备应用的研究渠道,实现学术部门与工业部门之间的有效整合,将好奇心驱动的发现提升到 CMOS 兼容技术的水平。